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PREFACE

In recent years there have been remarkable developments and advances in the field of
composites involving all majors aspects, namely materials, structures and manufacturing.
The new techniques have been developed as a result of extensive experimental, computa-
tional and analytical studies, adding a new dimension to tailor-made materials which are
suitable not only for applications involving aerospace but also civilian structures. As re-
search papers presented at this conference indicate, the continuous integration of advanced
technology, processes and computational methods are collectively helping the composites
become truly the material of the future by cutting the cost of materials and processes and
time-to-market.

ICCST/2 follows the highly successful ICCST/1 held in 1996. The conference provides
a forum for the presentation of the latest research results and technology applications in
composites and brings scientists, engineers and technologists together on African soil. It
is hoped that the present conference will contribute to the ongoing advancement of science
and technology in Southern Africa as well as to the upliftment of the communities and
populations of the region.

In the last decade, substantial progress has been made in smart materials and structures
technology, primarily due to developments in shape memory alloys, piezoelectric materials
and fiber optics. This is presently an emerging field of technology combining know-how
from physics, electronics, mechanics and chemistry and with applications ranging from
vibration control to damage detection. A section of the conference is now devoted to this
field.

The response to the call for papers has resulted in over 100 papers. However, to ensure
that the papers are of a high standard and to provide a relatively small forum for the
delegates to meet each other, the technical committee limited the number of papers to
80, which appear in these proceedings. For this reason all the papers were subjected to a
careful screening before being accepted.

The fact that 27 countries are represented in this volume bears testimony to the inter-
national nature of the conference and to composites research. We thank all the authors
and delegates who contributed to the success of ICCST/2. Our special thanks go to the
keynote speakers, session chairpersons and reviewers for their contribution and efforts.

Sarp Adali

Evgeny V Morozov

Viktor E Verijenko

Durban
May 1998
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RECENT DEVELOPMENTS IN THE MODELING AND BEHAVIOR OF
ADVANCED SANDWICH CONSTRUCTIONS

Liviu Librescu
Engineering Science and Mechanics Department

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, USA

The design and development of supersonic/hypersonic flight vehicles, of Future
reusable space transportation systems, launch vehicles and of advanced propulsion
systems constitute challanging issues for the aeronautical engineers and the research
workers insolved in these problems.

It is a well-known fact that during their flight missions, the structure of flight vehicles
has to with stand severe aerodynamic, aeroacoustic and thermomechanical loads. The
temperatures involved are likely to range from the extreme lows of cryogenic fuels and
radiation to space, to the highs associated with aerodynamic heating, heat from
propulsion unit and radiation from the sun. In spite of the increased flexibility which is
likely to characterize the structure of these flight vehicles, they have to be able to fulfill
a multitude of missions in complex environmental conditions and feature an expanded
operational envelope. The same is valid with the resuable space vehicles, which, for
evident reasons, require a prolongation of their operational life, without impairing upon
the security of flight.

A problem of evident importance towards the rational design of advanced supersonic/
hypersonic flight vehicles lies on the possibility to accurately determine the load
carrrying capability of their structure. Moreover, a better understanding of conditions
yielding an enhancement of the load carrying capacity, can dramatically contribute to
the increase in performance of these flight vehicles.

For curved panels such an investigation has a special relevance. Indeed, in contrast to
flat panels which experience a considerable amount of additional load-carrying
capability in the postbuckling range, the curved panels exhibit a highly unstable
postbuckling behavior, manifested by snap-through jumps toward a state of stable
equilibrium. In addition, the load carrying capacity of curved panels is imperfection
sensitive.

It appears evident that reduction of the intensity of the snapping phenomenon and of the
sensitivity to initial geometric imperfection is a matter of considerable importance
toward a prolonged use of curved panels in the postbuckling range, without impairing
upon their structural integrity.

One of the modem trends in the construction of next generation of flight vehicles
capable of operating in a high temperature environment, consists of the ongoing
incorporation in their structure of advanced composite materials.



A typical laminated structure which is highly used in these projects and is likely to play
an increased role in the design of advanced flight vehicles is the sandwich type
construction.

In its simplest form the sandwich construction can be viewed as a structure composed of
two stiff layers (face-sheets), separated by a thick mid-layer of low density material
(core layer). This type of structure encompasses a number of properties of exceptional
importance toward fulfilment of the
high exigencies imposed upon the advanced flight vehicles. Among other features there
are i) high bending stiffness characteristics with little resultant weight penalty, ii)
provide a smoother aerodynamic surface in a higher-speed range, iii) provide excellent
thermal and sound insulation, and increased strength at elevated temperatures, and iv)
provide a longer operational time as compared to stiffened-reinforced structures which
are weakened by the appearance of stress concentration. In a continuing effort for
higher stiffness and strength to weight ratios, the raditional materials have evolved from
metallic face-sheets and aluminum honeycomb core to composite materials. In this
sense, the face-sheets are likely to be composed of anisotropic fibre-reinforced
composite laminates, whereas the core from non-metallic honeycomb and plastic foam
materials.

Due to all these new features, in order to predict accurately their response behavior
under mechanical and thermal loading systems, refined models of sandwich-type
constructions are needed.

The goal of this paper is to review some of the modem developments which have taken
place in the last several years, and connect these with the prior achievements in the
field. At the same time, problems related with the use of this structural model toward
investigating the buckling strenght and its behavior in the post-buckling range by taking
into account the effect of the initial geometric imperfections will be also addressed.

Another problem included in this lecture and which presents a considerable practical
importance is related with the enhancement of the buckling strength and of the
postbuckling behavior, and with the reduction of sensitivity to initial geometric
imperfections as featured by the curved panels. Results addressing these issues are
displayed and pertinent conclusions are outlined.

The provided list of references is not exhaustive in the sense that it is mainly connected
with the topics presented in this review, in which the author himself has been directly
involved.
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MODELING THE STATISTICAL LIFETIME OF GLASS FIBER/
POLYMER MATRIX COMPOSITES IN TENSION

S. LEIGH PHOENIX

DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS

CORNELL UNIVERSITY

ITHACA, NY 14853, USA
e-mail: slp6@coruell.edu

ABSTRACT

In this paper we present a viewpoint on modeling the lifetime of glass fiber/polymer
matrix composite structures loaded primarily in tension along the fiber axis. In many
applications such components may sustain, over many years and in deleterious environments,
stress levels that are a significant fraction of their ultimate tensile strength. Thus the failure
phenomenon of concern is creep rupture. Ideally, a comprehensive model should incorporate
such features as environmentally driven, statistical degradation mechanisms in the glass fiber
(such as stress corrosion cracking), creep and microcracking of the polymer matrix, slip at the
fiber/matrix interface near fiber breaks, local residual stresses from processing, including their
complex micromechanical interactions. Such a model should yield overall distributions for
lifetime in terms of the overall applied stress field, the overall volume of material, and
boundary effects. Parameters of the model should reflect subtle scaling relationships among
microstructural variables (e.g., fiber packing geometry), parameters of the statistics of fiber
strength and degradation, matrix and interface creep exponents, rate factors in the stress-
corrosion chemistry, and applied stress level. Particular attention must be paid to the character
of the extreme lower tails of the strength and lifetime distributions since these are crucial in
establishing load levels that result in the extremely high reliability levels important in life-
safety applications. For example, the model should be able to predict the steady load level in a
composite specimen with an effective loaded volume that yields a given lifetime (e.g., 25
years) at an extremely low probability of failure (e.g., 10-6). This essentially rules out mean
field approaches so prevalent in the mechanics and physics community. A model of this sort
would also be useful in the development of strategies for effective accelerated testing and data
interpretation using special time-temperature scalings and master curves. Lastly, the model
would have value in guiding strategies for quality control, materials processing, and component
architecture during manufacture. Of course, such a comprehensive model is well beyond the
present state of the art. Nevertheless, a surprising amount of progress has been made in
developing the necessary conceptual and computational framework including the
micromechanics, chemistry and physics of the fundamental failure mechanisms. In this paper
we will review some of the relevant literature and suggest directions that should be fruitful in
yielding useful models.

INTRODUCTION

In many applications in civil engineering [1-6], a composite component must sustain,
for many years, stress levels that are a significant fraction of its ultimate tensile strength, and
often in deleterious environments. Various applications in new construction are: (i)
reinforcement of concrete using ID rods, 2D grids and 3D networks, (ii) tension members for
prestressing concrete, (iii) bridge cables, stays, hangers and roof support cables, (iv) pultruded
beams and bridge superstructures, and (v) storage tanks and piping. Interest also exists in using
composites for repair and rehabilitation of deteriorating structures. Further applications also
include pressure vessels and flywheels in aerospace and automotive applications, and

3



centrifuges in medical and nuclear power. A generally recognized problem is creep fracture
(also known as creep rupture, stress rupture, and static fatigue), a catastrophic failure event that
typically occurs with little or no warning [6]. Thus, establishing load levels that yield long
lifetimes at acceptable reliability levels becomes a major challenge. To this end considerable
research is being carried out in the US [7] and internationally [8]. Many recent works report
basic lifetime tests on the performance of composite components in various environments and
over limited time-frames (e.g. [9-12] in [8]). These works, however, rarely consider governing
micromechanical, statistical and chemical mechanisms at the fiber scale, and rarely draw on the
vast experimental and modeling literature developed over the past 50 years in connection with
national defense and space exploration. Often crucial information on properties of the
constituent materials, and test conditions is not documented. Thus, it is problematic to
extrapolate the results to other settings.

A common methodology is to use a 'brute force' testing approach. In this method, a
large number of lifetime tests are performed on basic composite specimens at each of several
load levels, and the results are fitted to a lifetime model based on phenomenology, such as a
Weibull distribution. Scale and shape parameters are chosen to reflect sensitivity to stress level
through power law or exponential laws (producing linearity on log-log and semi-log
coordinates, respectively), which sometimes may contain an Arrhenius factor to account for
temperature or environmental effects. While such tests are very important, their utility is
greatly diminished in the absence of an accurate model to allow extrapolation of the data to
other time and size scales, chemical concentrations, and especially load levels that result in low
failure probabilities. Studies in the literature suggest some key lessons: The precise values of
creep-rupture parameters cannot be predicted through simple averaging rules based on bulk
measurements on the fibers and epoxies; in fact, similar systems can yield puzzlingly different
results, pointing to the need for understanding the basic micromechanisms.

Glass fiber/polymer matrix composites have been of interest for military and aerospace
applications for about 50 years, and a vast literature has developed. This literature covers
failure mechanisms in glass fibers, polymer creep and interface failure mechanisms including
environmental aspects. In addition there exists extensive lifetime data on failure of composite
specimens under long term loading. Let us now review various aspects of this literature.

REVIEW OF EXPERIMENTAL LITERATURE

Experiments on single glass fibers. The mechanisms of failure in E-glass, S-glass and other
glass fibers, with respect to short-term strength and long-term static fatigue conditions, have
been extensively studied both theoretically and experimentally, and considerable data has been
carefully generated. The classic works of Taylor [13], Stuart and Anderson [14], Charles
[15,16], Mould and Southwick [17], and Charles and Hillig [18] have resulted in a fundamental
understanding of the chemical and kinetic mechanisms involved, including the effects of stress-
corrosion in humid and alkali environments. Kies [19], and Schmitz and Metcalfe [20, 21]
carried out extensive studies of the flaw types, their sources during processing and handling,
and especially their statistical distributions. Hillig and Charles [22] further advanced
understanding of stress dependence in surface reactions and how flaws geometrically evolve to
form cracks. Metcalfe et al. [23] studied spontaneous flaw groWth in alkali environments, and
provided some spectacular micrographs of periodic cracking along glass fibers. In the fiber
optics area, more recent work has considered the protection of the surface of glass fibers using
polymer coatings. Schonhorn et al. [24], for example, showed how to improve the performance
of optical glass fibers in static fatigue by coating with a uv-curable epoxy-acrylate coating, but
interestingly certain degradation exponents remained unchanged. Many key ideas in the failure
of glass fibers are reviewed in Kelly and Macmillan [25].
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Based on this literature we believe it is possible to build a statistical, mechanistic
model of the failure of individual glass fibers under steady and mildly cyclic stresses that is
much more advanced and comprehensive than has been attempted to date. Such a model can
incorporate effects of temperature, alkali (and acid) species and concentrations, probability
distribution shapes, and scaling laws for lifetime (scale parameter or mean) versus stress level.
Much of the fiber lifetime data can be resolved fairly linearly on power-law coordinates with
slope exponents ranging from about 30 on downward as the environment becomes more
aggressive (e.g. higher temperature, increased moisture and alkaline concentration). Some of
the above works show how data for various cases and materials can be reduced onto one master
or universal fatigue curve. Surprisingly, many recent studies on the failure of glass
fiber/polymer matrix composites have made virtually no reference to this extensive literature.

Experiments on unidirectional glass fiber/epoxy composites. Extensive experiments on the
strength and stress rupture of S-glass/epoxy unidirectional composites (mostly resin
impregnated strands), were carried out at Lawrence Livermore National Laboratory (LLNL) in
the late 60's through the '70's. The results are reported in several publications and internal
reports [26-31], and some data is shown in Figure 1. (Kevlar and carbon fiber composites were
also studied [32,33].) The most extensive experiments were on epoxy-impregnated strands
containing several hundred filaments in two basic epoxies. Data is available for hundreds of
strands loaded for over five years at several load levels above 33% of the short terms strength.
(The experiments were unfortunately destroyed by an earthquake in 1979.) Strength retention
tests were performed on specimens removed after surviving for various times in an attempt to
study degradation in strength versus time [28]. Strength retention was also performed on
unloaded specimens that had been stored under ambient conditions for up to 4 years, with only
about a 4% drop in strength, most of which occurred during the first year. While the data base
generated was massive, the modeling employed was minimal with respect to relating strand
performance to that of virgin glass fibers and the epoxy matrix.
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Studies have also been performed at laboratories outside of the US. In Israel, Lifshitz
and Rotem [34], performed experiments on glass fiber/epoxy and glass fiber/polyester
composites, and built a simple micromechanical model to explain the results. Lifshitz [35]
reviewed the literature on stress-rupture in many materials including single E-glass fibers tested
at 50% RH and various temperatures. In England, Kelly and colleagues [36,37] studied the
failure of bundles of glass fibers and composites by stress-corrosion mechanisms in hot, wet
environments. In these cases models built on micromechanical and statistical mechanisms
were developed to explain the results. In the mid 1980's work was conducted in England by
several workers [38-43] including much work on polyester matrix composites in aggressive
environments, including both acids and bases, and at various temperatures. These works
underscore the importance of fiber-matrix interactions, including the importance of matrix
cracking in allowing aggressive chemical species to enter the composite and attack the fiber
surface.

In the US. during the 1970's and early 1980's long-term stress rupture of glass fiber
composites appears to have received little attention. A compilation by Hilado [43] has no
papers devoted to the subject, though effects of moisture on strength and fracture energy are
covered.

Experiments on creep behavior of polymer matrices. Lifshitz and Rotem [34] showed that
matrix creep in shear between the fibers plays an important role in the breakdown of the
composite, by altering over time the stress redistribution from broken to surviving fibers.
Long-term creep data for polyesters and epoxies is difficult to find, but there are references to
other polymers and general time-temperature scaling principles. Findley and Tracy [44]
reported creep data for PVC under loadings lasting 16 years. Kibler and Carter [45] gave some
creep results for 5208 epoxy resin at various temperatures from 296 K to 435 K, and fit a
power-law creep function (in the context of linear viscoelasticity) with corresponding
exponents increasing from 0.1 to 0.4. Master curves and shift factors for net creep compliance
were also given. Kibler [46] developed results for creep of various graphite epoxy laminates
from which creep parameters for the epoxy alone could be extracted. Viscoelasticity theories
for such applications were given by Schapery in a review paper [47] and in a special appendix
to Kibler's report [46]. In the case of crack growth connected to local polymer creep and
breakdown at the tip, relevant theories were given by Schapery [48]. A well known monograph
on molecular based aging and creep mechanisms in polymers is due to Struik [49].

MICROMECHANICS AND STATISTICS OF MECHANISMS IN CREEP FRACTURE

Creep fracture of unidirectional fibrous composites results from evolving
microstructural damage in the form of statistically accumulating fiber breaks over time,
eventually resulting in rapid localization at some location forming a catastrophic crack. When
such composites are loaded at a substantial fraction of their instantaneous strengths, it is
important to appreciate the magnitudes of the stress levels involved. At a fiber volume fraction
of 65%, for example, composite specimens such as resin impregnated strands or rods, can have
mean tensile strengths of the order of 1.75 to 2.5 GPa (250 to 350 ksi). Under, ideal, ambient
laboratory conditions, composites loaded at 40% of these values, namely 0.7 to 1.0 GPa (100 to
140 ksi) can have mean lifetimes of the order of 10 years. The variability in time to failure,
however, is typically very large with coefficients of variation on the order of 100% to 500%
depending on the fiber type, as indicated in Figure 1. In the final stages of life, within such
structures, a rapid increase in strain rate (tertiary creep) may occur in a few highly localized
regions, but at the macroscale this is very difficult to detect. In fact, the amount of overall
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creep observed is very small and even a secondary creep stage may be obscured. This is
because creep is mostly due to break opening displacements since the matrix carries negligible
tensile load and the brittle fibers creep negligibly. Continuous graphite fibers, for example,
typically show no creep at room temperature [50]. (When the load-bearing fibers are aligned
off-axis in a composite, the situation is quite different as matrix creep and failure may
dominate, as shown by Raghavan and Meshii [51,52].)

The high variability in strength found in brittle fibers is well modeled by Weibull-
Poisson statistics. This variability, due to various random flaws on the fiber surface and in the
fiber interior, means that many fiber breaks are inevitable in the composite as time passes or as
load is increased, especially in glass fibers, where flaw growth due to stress corrosion
mechanisms occurs. Initial fiber breaks may be fiber discontinuities due to processing or
breaks due to initial loading, and at loads well below the composite mean strength are typically
widely spaced relative to the fiber diameter. A few, however, may be in small clusters. These
breaks create local stress concentrations in both the matrix and the neighboring intact fibers as
the matrix, through shear, transmits the tensile loads of broken fibers to neighboring fibers.

Near these initial breaks, especially those in small clusters, the local tensile stress
levels in the fiber can approach 5 GPa or even higher, whereas the maximum shear stresses in
the matrix are of the order of 35 MPa, more than 100 times lower. At such stress levels the
matrix will creep in shear, or, progressively debond from the fiber (as a propagating cylindrical
mode II crack) followed by time dependent slip. The effective shear strains even before slip
can reach as much as 30 or 40 percent. Thus, the length scale of overloading of neighboring
intact fibers increases over time, and the probability of subsequent failure of these fibers also
increases. The resulting additional fiber breaks further increase local fiber and matrix stress
concentrations, and further accelerate the local matrix shear creep, interface debonding and slip
processes, again increasing the local stresses and probabilities of failure of neighboring fiber
elements. Generally there will be many small, stochastically growing clusters of fiber breaks
distributed throughout the loaded composite. Eventually one of them will become large
enough, possibly through cluster linking, to initiate a catastrophic crack.

In summary, there is an interaction of such factors as the statistics of fiber flaw growth,
matrix creep, interface debonding and slip, local fiber packing, fiber volume fraction and
overall composite volume under load. Local stress level, temperature, moisture concentration,
and acid or alkali concentration, will affect the rates of these processes in different ways.
Overall composite breakdown rates and statistics crucial to life-prediction will reflect non-
trivial interactions of these rates and shape parameters of the statistical fiber flaw distributions
as they change over time. One can expect extremal statistical processes over the loaded
volume to play a crucial role. This means that mean field concepts will play a minor role in
understanding failure.

CURRENT MODELS FOR CREEP FRACTURE

A detailed mathematical description of the above viewpoint can be found in Phoenix et
al. [53] and Otani et al. [54] who developed a model of failure backed up with experimental
results on model microcomposites of seven carbon fibers (Hercules IM6) in an epoxy. It was
shown that, whereas the carbon fibers underwent negligible creep rupture, that of the
composites was appreciable; the lifetime scale parameter versus stress level on a log-log plot
showed a power-law exponent of about 55, about one-fifth the 294 value for individual fibers,
as shown in Figure 2. Moreover, this composite exponent was shown to depend explicitly on
the Weibull shape parameter for fiber strength, p, the creep/debond exponent for the matrix, f8,
and the critical fiber break cluster size, k following [k/(k-1)]2p//f.
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Figure 2. Lifetime data for Hercules IM6 graphite fibers and 7-fiber/epoxy: (a) Weibull scale
parameter for lifetime versus stress level for single fibers on power-law coordinates; (b)
corresponding data for 7-fiber microcomposites; (c) distributions for lifetime of single fibers at
stress ratios (stress divided by Weibull scale parameter for strength) 0.925, 1.00 and 1.05,
plotted on Weibull coordinates; (d) corresponding data for 7-fiber microcomposites at the stress
ratio 0.83.

A related aspect was the distribution for lifetime of the composite as compared to the
fibers. Farquhar et al. [5 1] plotted lifetime data for individual 1M6 graphite fibers, on Weibull
coordinates for various normalized stress ratios (stress divided by Weibull scale parameter for
strength) as shown in Figure 2. The fit was excellent and the Weibull shape parameter for
lifetime was about 0.02 representing huge variability (>1,000%). In comparison, the lifetime
distributions for the 7-fiber, IM6 graphite fiber/epoxy microcomposites [53,54] showed
Weibull shape parameter values more than 10 times larger, as shown in Figure 2. In fact, the
lifetime distribution was not truly Weibull but showed bimodal behavior as the model
predicted; the Weibull shape parameter for the upper tail was about 0.2 and for the lower tail
was about 0.4. These higher values corresponded to greatly decreased variability in composite
lifetime versus the fibers, and the variability decreased even further deep into the lower tail of
the lifetime distribution especially at lower loads. The kink in the bimodal distribution was
shown to be caused by a change in the critical cluster size at shorter times.
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In connecting their results to other work, Phoenix et al. [53] reference experimental
work on graphite fiber/epoxy strands at Lawrence Livermore National Laboratory in the '70's
and '80's [32], at Oak Ridge National Laboratory in the '80's, and in Japan [55], again following
a direct experimental approach. Slightly larger power-law exponents were measured in those
cases (probably because of reduced boundary or surface effects due to having many more
fibers, reducing the effects of slip), but the values were still far lower than values above for
single fibers. Also the Weibull exponents for lifetime were comparable to the values for the 7-
fiber composites.

In glass fiber/polymer matrix composites, stochastic flaw growth in the individual glass
fibers also plays a critical role [34-42], making the failure process and modeling much more
complicated than in the carbon fiber composites. The breakdown parameters depend subtly on
interactions of the statistics of fiber flaw growth, matrix creep and debonding mechanisms.
Similar processes also occur in metal matrix and glass matrix composites reinforced with
ceramic fibers. In recent modeling efforts [56-59] stress redistribution among fibers was
assumed to follow 'global load-sharing'. (See Iyengar and Curtin [59] and references therein to
Curtin's earlier landmark work.) Calculation of the mean lifetime has been carried out, but not
the variability nor the distribution shape. Thus, distributions for lifetime (especially the
reliability associated with lower-tail behavior), and size effects have not been obtained as yet.
These latter issues may be treated, however, by extending recent work on time-independent,
global load-sharing models by Phoenix et al. [60].

BASIS FOR IMPROVEMENTS IN MODELING

Computational micromechanics techniques. Up to now statistical models for creep fracture
involving micromechanics have used highly idealized stress redistribution rules. This has been
done in large part to simplify the probability calculations but also because more sophisticated
micromechanical calculations are computationally too intensive, especially using standard
techniques such as the finite element method. One extreme has been equal load-sharing (ELS)
among fibers [34-36], which has recently been extended to the concept of global load-sharing
(GLS) [59]. The other is local load-sharing (LLS) where the stress of failed fibers is
redistributed equally onto its nearest surviving neighbors following geometrically prescribed
patterns [53,54]. Matrix creep has usually been captured by increasing with time the
characteristic length of the local stress transfer region, using simple scalings from problems
with an isolated fiber break in an array of fibers. These rules have led to considerable insight
through scaling relationships involving fiber Weibull moduli, matrix creep exponents, load-
sharing constants and fiber break cluster sizes, but for larger 3D composites they are not
realistic enough to yield precise quantitative predictions of the lifetime scale parameters and
distribution shapes.

In creep fracture, various micromechanical features occur, that require more
sophisticated treatment. As mentioned, when a fiber breaks the stress at the fiber discontinuity
drops to zero, but over a characteristic length recovers gradually along the fiber to the remotely
applied fiber stress. Also corresponding to this length is an overstress length on neighboring
fibers, where nominally the maximum overstress occurs directly adjacent to the fiber. The
shear deformation near broken fibers, may reflect elastic, plastic and viscoelastic effects in the
matrix and frictional sliding effects at the interface acting together to determine the growth of
the characteristic length of stress transfer in time, and the actual shape of the overstress pr'ofiles
on neighboring intact fibers. This characteristic overstress length will grow to become many
times the length based on initial elasticity, but the stress concentration peaks may be lowered
somewhat also (though on more distant neighbors they will increase). Interestingly, these peak
values are unchanged when only matrix creep under linear viscoelasticity occurs; decreases in
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the peak turn out to result from matrix deformation that is nonlinear in stress such as plasticity
and time dependent slip. Nevertheless the probability of additional fiber failures occurring
locally in time will increase, resulting in clusters of breaks that increase in size.

To improve the modeling, there have recently been concerted efforts at Cornell
University and elsewhere to develop computational micromechanics techniques that are much
faster and more realistic. The most successful framework has been built upon the idealized,
shear-lag framework of Hedgepeth [61,62]. (See the monograph of Chou [63] for a review and
many applications.) In these models the fibers carry the tensile loads and the matrix primarily
transmits loads in shear, allowing load transfer from fiber to fiber near breaks. Extension of
these models to include additional stress tensor information may seem desirable and is
reasonably straightforward, but numerical studies have shown that the gains in accuracy and
realism are surprisingly small and rarely worth the greatly increased computational cost. In
fact, the shear-lag approach yields realistic and accurate stress and displacement results that are
consistent with those from experiments using micro-Raman spectroscopy and finite element
calculations [64,65]. But the greatest advantage is that the shear-lag model can model stress
redistribution in complex, random fiber break patterns including crack-like formations. In the
latter case, when compared to classical continuum results for cracks in orthotropic media, the
stress results agree remarkably down to the length scale of one fiber diameter [66]. Also shear-
lag models show promise of modeling complex process zones ahead of crack tips not amenable
to classical continuum treatments since crucial, discrete statistical features are lost (which
surprisingly do not smooth out as the crack grows large relative to the fiber diameter).

The simplest, purely elastic version developed at Cornell is called break influence
superposition (BIS) [66], and it can handle rapidly hundreds of arbitrarily placed fiber breaks
[67,68] on a small workstation. A more advanced version called quadratic influence
superposition (QIS) [69] uses quadratic order corrections to allow for localized matrix yielding,
interfacial debonding and frictional sliding around many, arbitrarily located fiber breaks. The
QIS technique can compute the extent and shape of the yield and debond zones, and the stress
and strain distributions everywhere. In the time dependent case, the newest version is called
the viscous break interaction (VBI), which can handle fiber break arrays in viscous and
viscoelastic matrices following a power-law creep function [70]. This new model builds on
influence functions based on earlier work at Cornell [71,72]. All these versions show promise
of being up to three orders of magnitude more powerful than full discretization schemes such as
finite difference or finite element methods. Finally we note that Curtin and coworkers [73]
used lattice Green's functions to solve problems similar to those treated by the BIS and QIS
method. However, high accuracy requires fine discretization along the fibers, reducing
computational efficiency.

STOCHASTIC FAILURE MODELS FOR FIBERS AND BUNDLES

In addition to the computational micromechanics aspects described above, there is also
long-standing experience in stochastic modeling of the failure of fiber bundles, and chains of
bundles under ELS, GLS [74-80] and LLS [81,82] among fibers. Experiments have also been
performed on fibers and composites to support the basis for these models [83-85]. Several
works, for example, have dealt with the failure of bundles where the failure of the individual
fibers depends stochastically on their individual load histories [74-77,81] and reflects fiber
strength degradation kinetics. This is a crucial aspect to modeling failure in glass fibers. As
discussed, an important aspect has been to capture time dependent creep in the matrix and
debonding at the interface, and how it affects stress transfer mechanisms and probabilities of
local fiber failure. These works incorporate this feature crudely [53,54,70]. Also, an important
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theme has been the treatment of long chains of finite bundles. In these cases, the mathematical

framework of the statistical theory of extremes is crucial [76,77,81,82,83].

FUTURE PROSPECTS IN MODELING

The goal of building a comprehensive model will be accomplished by incorporating: i)
fiber mechanical properties and flaw statistics at the length scale of local fiber load transfer,
including any stochastic stress-time dependency, ii) matrix plasticity and creep in shear around
fiber breaks, iii) interface debonding and viscous frictional sliding in terms of local shear stress,
iv) local fiber and matrix packing geometry (2D planar, 3D hexagonal and random) and
associated residual stresses from processing, and v) multiple matrix cracking insofar as it
affects penetration of the environment to the fiber surface. Major aspects will be to use these
theoretical models and supporting numerical analyses to determine key scalings, such as: a) the
shapes of resulting strength and lifetime distributions, effective Weibull shape parameters (in
cases where the Weibull distribution is an accurate approximation) as a function of load level
and distribution, and composite volume, b) sensitivity of lifetime to load level in power-law
(log-log), exponential (semi-log) and other functional frameworks motivated by the physics
and micromechanics of stochastic flaw growth in the composite, c) critical cluster size and
'crack threshold' parameters. An important goal should be to uncover new functional forms for
strength and lifetime distributions when relevant, rather than assume Weibull forms a priori.
This is particularly important when modeling sensitivity to stress level and lower tail behavior.

A long term goal should be to implement the model in a Monte Carlo framework to: i)
validate key analytical scalings and determine certain proportionality constants not accessible
by analytical methods alone, and ii) perform many more replications (say 1,000 samples per
stress level) on realistic structures than can be handled by physical experiments alone. The
ultimate objective should be to generate computational tools to 'design' material
microstructures and determine processing routes towards enhancing lifetime and reliability
through proper quality control tests and handling procedures for the glass fibers, and tailoring
of fiber-matrix interface and local matrix creep properties. For validation, predictions should
be compared to experimental results on actual composite specimens (resin impregnated strands
or coupons) as well as on microcomposite specimens [53,54].

For example, with respect to the fiber we already have stochastic models for its failure
based on Weibull/Poisson statistics and fracture mechanics concepts for flaws
[25,36,37,51,81,84,85], but these do not take full advantage of early knowledge on chemical
mechanisms of stress-corrosion [13-18,22,23) and flaw statistics [19-21]. These ideas should
be revisited to better couple chemistry, temperature, flaw statistics and crack-growth
mechanisms into a stochastic fracture model for fibers. This is essential to understanding the
chemical interactions of the glass and the environment at the fiber-matrix interface. Versions
of the model should be comprehensive and suitable for numerical simulation codes for
composite creep fracture, but simplified, parametric versions will be necessary and desirable
for asymptotic and scaling analysis. One goal should be to asses the extent to which the
simplified models can be used without significantly compromising the accuracy of predictions.

With respect to the matrix, as mentioned earlier, at a fiber break the load is transmitted
to neighboring fibers, and the cross-linked polymer matrix locally undergoes large shear
stresses and strains. As time passes the matrix creeps and eventually work hardens, resulting in
interface failure and a slowly propagating debond or shear crack [86]. Furthermore the extent
of interface sliding will depend on friction controlled by the balance in normal stresses
resulting from thermal shrinkage during curing (compression) versus swelling from moisture
absorption (tension), these also depending on the fiber packing geometry and volume fraction.
This process needs to be better modeled. Also moisture and aggressive chemical species
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(alkalis) may penetrate the matrix to the fiber surface by diffusion through the matrix, or
transport along the debonded fiber/matrix interface, or along transverse matrix cracks. We
believe the tools are available to model these effects.

With respect to stress and strain evolution around large arbitrary arrays of fiber breaks
in 3D, recent computational mechanics techniques are sophisticated, weighted superposition
methods where the calculations are tied to the amount of damage (fiber breaks, nonlinear
matrix deformation zones) rather than to the full composite size. Solving multiple fiber break
problems involves an appropriately weighted, superposition of certain basis or influence
functions obtained from certain unit solutions. An important advance is the very recently
developed version, VBI to handle fiber break arrays in viscous and viscoelastic creeping
matrices following a power-law creep function [69]. We believe this method is adaptable to a
viscoelastic matrix with nonlinearities involving a power law in both stress and time, or to an
interface slipping in time. It also can be extended to include 3D fiber arrays, variable fiber
spacing and arbitrary sequences of fiber failures. This is needed to efficiently calculate
evolving fiber and matrix stress and strain profiles at any stage of the composite failure
process. In particular it is necessary to model what happens in growing clusters of breaks as
they coalesce to form a catastrophic crack. We should note that there is a strong indication that
when these nonlinear processes are particularly strong as is often the case, GLS becomes a very
accurate model once the effective bundle size is determined [58,59]. A basis exists for a model
that could be adapted for this task [80].

The stochastic models for failure of fiber bundles and fibrous composites, discussed
earlier [74-82], have shortcomings that need to be addressed. Much more realistic stress-
redistribution calculations in 3D are necessary and these can be achieved by the methods just
discussed Second, there is a need to pursue scaling concepts with respect to volume effects in
the strength distributions that have been pursued in the physics literature [87,88]. Perhaps most
important is the need to combine stochastic decay in fiber strength with matrix creep in one
unified framework, leading to lifetime distributions, size scalings and stress dependencies that
are realistic and can be used to interpret real composite lifetime data in the context of the
mechanisms involved. Thus, using enhanced computational capability for micromechanics,
probability analysis and combinatorics in an extreme value setting, it will be possible to
develop more advanced functional forms of failure distributions, including size and stress
gradient effects, effects of stress level, and effects of temperature and environment.

With respect to accelerated testing, questions to consider through modeling are: To
what extent is it possible to be misled by apparent good performance early in tests? To what
extent do paradoxical phenomena occur? How sensitive are such tests to factors known to
eventually reduce long-term lifetime according to the models above or to data in the literature?
And lastly, can parameters be estimated from accelerated tests on simple composite specimens
that can be used in predicting the lifetime of larger specimens in service?

Finally such models could be used to assess manufacturing approaches, materials
processing, quality control and component architecture insofar as they affect durability and
reliability. Questions are: What quality control tests on the fiber, matrix and composite strands
or coupons are necessary to ensure reliable components? Is proof loading useful as a strategy
to 'weed out' weak components and 'condition' the material, or, does it introduce large
numbers of fiber breaks that subsequently accelerate the creep fracture process? Should yams
and rovings be clustered in the material or should the fibers be distributed as much as possible
throughout the material? Should components be continuous or arrays of smaller components as
in bridge strands, and what is the optimal number. If material or components are removed from
service and residual strength tests performed can this be converted into a meaningful measure
of remaining life? In large applications should material be put on test in laboratories under
conditions similar to the actual application, and should material be periodically removed for
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testing? In quality control tests of strength coupons, what signs in the failure modes and
distributions are indicative of material that will have poor reliability? In engineering practice
these maywell be the most relevant questions. We believe modeling plays a crucial role in
answering them.
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ABSTRACT
A review of theoretical developments in thermopiezoelasticity having relevance to smart

composite structures is presented. The equations governing linear response of piezothermoelastic
media are outlined, and a general solution procedure based on potential functions is described.
Sensor applications aimed at predicting thermal loads and corresponding responses from
measurements of electric potential distributions are described; studies on the control of
composite structures (beams, plates and shells) via piezoelectric actuation are reviewed.

INTRODUCTION
Due to their special characteristics, piezoelectric materials can function effectively as

distributed sensors and actuators for controlling structural response. In sensor applications,
mechanically or thermally induced disturbances can be determined from measurement of the
induced electric potential difference (direct piezoelectric effect), whereas in actuator applications
deformation or stress can be controlled through the introduction of an appropriate electric
potential difference (converse piezoelectric effect). By integrating piezoelectric elements and
advanced composite materials, the potential exists for forming high-strength, high-stiffness,
light-weight structures capable of self-monitoring and self-controlling. Such "smart" structural
systems, characterized by sensors and actuators that are attached or embedded within a laminate
and regulated by feedback control, have been the focus of considerable recent attention. While
the majority of the research has been directed at behaviors of structures subject to isothermal
conditions, an increasing number of investigations have addressed thermo-electro-mechanical
responses. The purpose of this article is to report on the status of piezothermoelasticity and its
relevance to intelligent composite structures.

Among the early investigations in this area, Tiersten [53] derived the differential
equations and boundary conditions governing the behavior of an electrically polarizable, finitely
deformable, heat conducting medium in interaction with an electric field. Thereafter, Mindlin
[36] deduced the equations describing small vibrations of piezoelectric plates, including the
coupling between the deformation, temperature and electric fields. A uniqueness theorem was
presented in [36] to establish the face and edge conditions sufficient to assure unique solutions of
the two-dimensional equations. W. Nowacki [39] provided a uniqueness theorem for the solution
of the three-dimensional equations of thermopiezoelectricity . He also generalized Hamilton's
principle and the theorem of reciprocity of work to include thermoelectric effects. J.P. Nowacki
[38] derived a reciprocity theorem for static thermopiezoelectricity, and utilized the theorem to
generalize Maysel's (Green's function) formula. Uniqueness and reciprocity results for
quasistatic and dynamic thermopiezoelectricity were established by Iesan [24].

Kalpakidis and Massalas [28] extended Tiersten's theory, by including in addition to
dipole moments the quadrupole moments, and by considering the constitutive equations to be
dependent on the time rate of change of absolute temperature. A generalized linear theory of
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thermoelasticity for piezoelectric materials, which includes heat-flux among the independent
constituent variables, was proposed by Chandrasekharaiah [19]. Thermal effects in piezoelectric
composite structures, including temperature-dependent material properties and heat generation
due to electric loading, were studied by Rao and Sunar [41]. Bert and Birman [15] investigated
both stress and temperature dependency of the constitutive properties; they showed that as a
consequence of temperature dependency, the thermal expansion and piezoelectric coefficients
must be stress dependent.

While the governing equations of themopiezoelectricity are normally expressed in
differential form, they may alternatively be stated in variational form. Variational principles were
deduced by Altay and Dokmeci [1] for discontinuous fields. The principles were shown to
generate the divergence equations (stress equations of motion, charge equation of electrostatics,
and equation of heat conduction), the gradient equations (strain-displacement equations, electric
field-electric potential relations and Fourier's law of heat conduction), the constitutive equations,
boundary conditions and jump conditions for a medium with or without a surface of
discontinuity. These variational principles provide a useful means for deriving lower order
theories and approximate solutions for piezothermoelastic bodies.

The present authors have proposed general solution procedures for stationary three-
dimensional [12] and two-dimensional [5] problems of piezothermoelastic solids in Cartesian
coordinates, for axisymmetric problems [13] in cylindrical coordinates, and for transient two-
dimensional [21] and axisymmetric [10] problems.

In the following sections of this article we review the equations governing
piezothermoelastic behaviors, describe a potential function solution procedure, discuss a number
of inverse problems having relevance to piezoelectric sensors, and review various investigations
dealing with the control of composite structures via piezoelectric actuation.

EQUATIONS GOVERNING PIEZOTHERMOELASTIC RESPONSE
The differential form of the equations governing the linear response of a piezothermoelastic

medium, written in terms of general curvilinear coordinates, is as follows.
Motion:

i J + f P iii

Electrostatics:
D i = 0 (2)

Heat conduction:

qi i =-pct+Q (3)

Constitutive relations:

ij = cijkeFkf - emiJEm - OT (4)

i "k imE iT (5)

q = (6)

in which oij is the stress tensor; EkV = 1/2(ukte +Uedk) is the strain tensor, with uk denoting

the displacement vector; Di is the electric displacement vector; Em = -(,m is the electric field

vector, given by the gradient of the electric potential (D; T is the temperature rise from the
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stress-free temperature. Also, cij' denote elastic moduli; elJ are piezoelectric coefficients; fi are
stress-temperature coefficients; 11im are permittivities; p' are pyroelectric coefficients; 0ij are
coefficients of thermal conductivity; te is the body force vector; p denotes density; c is the
specific heat; Q is the rate of heat generation per unit volume; () denotes a time derivative; and

( J) represents covariant differentiation with respect to a curvilinear coordinate 0i,

The above equations of motion and electrostatics can alternatively be expressed
in variational form as [1]

u[(i~i -fJ -p PiJ)u Di80] dV- f[(nT~ij -tJi)Su.-(n. D1 -)8q,]dS = 0(7

V 1J .1v - iiS - A

in which tV and 4 denote, -respectively, the prescribed stress traction and electric charge on
surface S of a body of volume V."

A GENERAL SOLUTION PROCEDURE FOR PIEZOTHERMOELASTIC BODIES
A solution procedure based upon potential functions has been developed for analyzing the

quasistatic piezothermoelastic response of a three-dimensional body of crystal class 6mm in
Cartesian [12] or cylindrical coordinates [13], a two-dimensional problem [5] for a plate of class
mm2, and a plate of class 6mm under axisymmetric heating [14]. For simplicity we consider here
the latter two cases, wherein the body is subject to a transient temperature field expressible as
T(ý, z, t) = To (z, t) + T1 (C, z, t) (8)

in which ý represents x in the two-dimensional problem in Cartesian coordinates, or the radial
coordinate r in the axisymmetric problem.

Solutions to the equations of equilibrium (1) and electrostatics (2) are found by expressing the
displacements and electric field vector in terms of potential functions as [5,10,14]
Eý -(AD1),C , Ez =-((0 + l)'z (9)

3
u% (01 +02 +iY-ltiVi),•. = 3 (10)

uz (00 +kk1 ol +J(i 2 + I miJi),zi=l

For the temperature field To(z,t), the potential functions (D0 and (o are given by
•0 =f 7 2 T0 (z,t)dz+C 1  (11)

0z = fy 1T0 (z,t)dz + C2  (12)

while for Tl(ý,z,t) the electric potential 01 is expressed as
3

01 =X+ (Il nivi),z (13)

In this case the piezothermoelastic potentials 0i (i = 1,2), the piezoelastic potentials Wi

(i = 1,2,3), and the piezoelectric function X are governed by the following equations:
•2 •2

(-)(A+ 3 --- ) 1 =d 2 AA +T1  d Ad Tzz + d0Tl (14)

Aýi + iviz=0 (15)

19



41*•2,zz = -'-(A•*I +vP~ Vl 5~z 1T1 ) (16)

1

Xz =- (A0 2 + V2•Zzz -8 2 T1 ) (17)

where
D 2 2 (D= x) (18)

a =a 2 /ar 2 +r- 1 /ar (ý=r)

In the above equations the quantities j, k 1 , fl, mi, ni, di' 1i 8ii 'vi, gi and -i depend on the
material properties as indicated in Ref. [5] for C = x, or in Ref [14] for ý = r. Since equations
(14) and (15) constitute uncoupled differential equations, solutions for 0 and liV generally can be
found. Once these functions have been determined, 02 and X are obtained from equations (16)
and (17).

PIEZOELECTRIC SENSOR APPLICATIONS
The direct piezoelectric effect, whereby an electric potential is generated when a

piezoelectric material deforms, provides a mechanism for sensing thermomechanical
disturbances. The concept of utilizing piezoelectric elements to predict unknown thermal
loadings and the corresponding piezothermoelastic responses from measurement of
induced electric potentials has been investigated by the present authors [3,6,8,9,11]. For
example, an inverse problem was solved [9] using the potential function approach
(equations (9)-(18)) to predict the axisymmetric stationary temperature distribution on the
surface of a circular piezothermoelastic disk, based on measurements of the electric
potential distributions on the faces of the disk. The problem of a disk subject to a spatially
uniform, time-varying ambient surface temperature also has been considered [8]. For this
situation an exact solution to the inverse problem was obtained corresponding to a
particular analytical form of the electric potential difference. Also presented was a finite
difference formulation that leads to a solution for the unknown temperature, without
specification of a particular form for the electric potential. Reference [11] extended the
earlier studies [8,9] to the case of transient axisymmetric response. A finite difference
procedure was developed to determine the transient, radially-varying ambient temperature
E(r, t) on the surface of a circular disk (Fig. 1), based on a knowledge of the induced
electric potential difference across the disk thickness. The thermal loading was presumed
to cause a difference in the electric potential given by

V(r, t) = []zb - [•]z-b = -V (1- 2f r2 + f r4)(1 - K-t/a2) where V0 is a constant and f is
-0 a 2  a 4

a specified parameter. Figure 2 shows the radial distribution of nondimensionalized

electric potential difference [• g- [j=_ý at various times t for a disk of thickness-to-

diameter ratio b = b / a = 0.1, corresponding to a value of parameter f = 1. The ambient
temperature distributions O(f, t) that would produce such electric potential difference
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variations are illustrated in Fig.3; the corresponding surface radial stress is shown in
Fig.4.
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Fig. 1. Piezoelectric sensor [1 1]. Fig. 2. Electric potential difference [11].
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Fig. 3. Inferred ambient temperature [11]. F ig. 4. Radial stress [11].

The inverse thermoelasticity problem of a structural plate to which a piezoelectric
ceramic plate is perfectly bonded was considered by Ashida et al. [3]. The potential
function approach again was utilized to determine the unknown stationary heating
temperature 0(x,y) on the surface of the structural plate, based upon the induced potential
distribution (D = V0 v(xy) on the free surface of the piezoelectric plate. Results such as
those mentioned above indicate that time-varying and/or spatially-varying thermal loads and
responses can be inferred from a knowledge of induced electric potential distributions.

Various other aspects of piezotherhoelastic sensing are reported in Refs. [16,25]. Irschik et
al. [25] considered the inverse problem of designing ("shaping") a sensor with a spatially-varying
intensity of activity such that the measured signal can be interpreted in a desired manner. They
examined the possibility of non-uniqueness of the inverse problems. Birman [16] examined the
effect of temperature on accurate interpretation of data from piezoelectric sensors.

CONTROL OF COMPOSITE STRUCTURES VIA PIEZOELECTRIC ACTUATION
Displacements and stresses caused by temperature variations can affect significantly the

performance and life of structures that operate in elevated or reduced temperature environments.
By taking advantage of the converse piezoelectric effect of bonded or embedded piezoelectric
elements within a composite structure, unwanted thermnomechanical disturbances can be reduced
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or possibly eliminated. A review of published works dealing with the control of various
composite structures, including laminated slabs/beams subject to cylindrical bending, and
laminated plates and shells with general deformation behaviors, follows.

Cylindrical Bending of Laminates
Several studies have been carried out on the cylindrical bending of piezothermoelastic

laminates subject to thermo-electro-mechanical loading [23,29,49,50]. In Ref. [49] for example,
exact analytical solutions were derived for the stationary plane-strain response of a hybrid
laminate consisting of orthotropic and/or isotropic structural layers and orthorhombic
piezoelectric layers. For electric loading of the piezoelectric layers, consisting of either a large
applied surface voltage or electric charge, it was assumed that the electric field resulting from
variations in stress or temperature (the direct piezoelectric effect) is insignificant compared with
that produced by the electric loading. In this case the electrostatics equation (2) governing the

electric potential (D becomes uncoupled and reduces to 7 rcIJ • = 0. Formulations that ignore

the direct piezoelectric effect hereafter will be referred to as "uncoupled".
The analytical formulation of [49] was employed in [50] to obtain the solution for a

"benchmark problem", consisting of a simply supported five-layer hybrid laminated slab (Fig. 5)
subject to specified thermal and electric-potential surface loadings. Also presented was a high-
order formulation in which both in-plane and out-of-plane displacement components were
assumed to have cubic variations through the thickness of the laminate. The high-order theory,
which accounts for transverse normal and shear deformations, reduces to first-order shear-
deformation and classical (Kirchhoff) theories, as special cases. Numerical results for the
benchmark problem indicate that the third-order theory yields results which are in better
agreement with the piezothermoelasticity solution than those based upon classical bending
theory.

Dube, Kapuria and Dumir presented three-dimensional exact piezothermoelastic solutions
for cylindrical bending of simply supported orthotropic [23] and cross-ply laminated [29] panels.
Solutions to the coupled equilibrium and electrostatic equations were obtained by Fourier
expansion of the state variables. In [29], a laminate consisting of a graphite-epoxy substrate with
a polyvinylidene fluoride (PVDF) layer bonded to one face, was determined for prescribed
sinusoidal surface temperature distributions and electric potential difference applied to the
piezoelectric layer. It was demonstrated that the maximum values of both the deflection and the
stress due to thermal loading can be substantially reduced by applying an appropriate value of
potential difference across the piezoelectric layer.

Response of composite beams to piezoelectric actuation has been investigated by several
authors [17,18,33,41,45,56,57]. Rao and Sunar [41] derived a fully-coupled finite element
formulation for thermopiezoelectric media, and applied the formulation to analyze vibration
sensing and control of a cantilever beam having two PVDF layers functioning as the distributed
sensor and actuator. Results indicate that heat generation resulting from feedback voltage applied
to the actuator may have a significant influence upon the structural response. The authors also
investigated the effect of actuator placement along the length of the surface of the cantilever
beam [45]. Lee and Saravanos [33] investigated the thermopiezoelectric response of composite
beams using a coupled, layerwise (piecewise continuous approximations through the laminate
thickness for the state variables) formulation and linear finite elements. Results demonstrate the
capability to actively compensate thermal deflections with piezoceramic actuators; the
corresponding sensory response of the composite beam was also studied. Blandford, et al. [18]
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employed first-order shear deformation theory and a hierarchical finite element representation to
investigate the static response of laminated beams to thermal and electric loads. The electric
potential was assumed to vary piecewise linearly through each piezoelectric layer. Both
uncoupled and coupled (direct piezoelectric effect included) formulations were developed. A
comparison was made of results with the thermoelasticity solution of [50] for the hybrid laminate
of Fig. 5 subject to a spatially varying electric potential applied to the top surface. Displacements
calculated using the coupled theory differ from the uncoupled theory values by less than 1
percent when the piezoelectric layers are PVDF, and by 5 percent in the case of lead-zirconate-
titanate (PZT) layers. Stresses obtained by the coupled theory were found to be approximately 8
percent greater than those found using the uncoupled formulation.

Tzou and Howard [56] developed a piezothermoelastic thin shell theory, and showed that
the theory could be simplified for a variety of configurations, including a composite beam. Tzou
and Ye [57] then studied the dynamic behavior and control of a steel beam sandwiched between
two PZT layers. Birman et al. [17] considered delamination detection in thermoelastic composite
beams having piezoelectric layers.

Laminated Plates
Analytical solutions to the coupled three-dimensional equations of piezothermoelasticity for

laminated plates are given in Refs. [2,4,22,60]. Control of stationary [22] and transient [4]
thermoelastic displacements of an infinite isotropic plate to which is bonded a piezoelectric
ceramic layer was investigated by Choi, Ashida and Noda. The potential function method
(equations (9)-(18)) was employed to determine a surface electric potential Vov(x,y,t) required to
achieve a prescribed displacement uog(x,y,t) when the structural layer is exposed to a surface
temperature Tof(x,y,t). An extension to this work for the case of a structural plate with two
piezoelectric layers (Fig. 6) was presented by Ashida [2]. Use of multiple rather than single
piezoelectric layers for the control of thermally induced deformations has the advantage that
much lower electric potential differences are needed. Xu et al. [60] developed three-dimensional
solutions in Fourier series form for analyzing rectangular plates consisting of fiber-reinforced
cross-ply and piezoelectric layers. Sensitivity coefficients were evaluated and used to study
sensitivity of the responses to variations in different geometric and material parameters of the
plate.

-cperamic plrt

Piezoelectric
Orthotropic, 0 t/2 ) 'It,,

Isotropic Y yý bi

Orthotropic, 90 t/2 b,
Piezoelectric .

I, b'• = ,.." • -isormpic

z-b Mrnc1Ww~plate

Fig. 5. Hybrid laminate [50]. Fig. 6. Laminate configuration [2].

Two-dimensional plate formulations applied to piezothermoelastic laminates have included
classical bending theory [48], first-order shear deformation theory [26], "equivalent-single-layer"
high-order theories [27,62], layerwise theories [42,43], and predictor-corrector procedures [47].

Classical lamination theory was extended in [48] to include piezothermoelastic response

of hybrid plates consisting of fiber-reinforced and piezoelectric materials. Solutions were
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obtained for a "free" plate of arbitrary contour and a simply supported rectangular plate,
assuming in each case that the electric field induced by temperature and stress variations
were negligibly small compared with applied electric loading. Noda and Kimura [37]
utilized classical lamination theory, and investigated the importance of temperature/stress
coupling in the equation of electrostatics. A comparison with Tauchert's solution [48] for
a simply supported hybrid laminate indicated that the coupling may not be negligible.
Jonnalagadda et al. [26] extended first-order shear deformation theory to include
piezoelastic behavior, and obtained an analytic solution for a simply supported plate, and
finite element results in the case of simply supported or fixed edge conditions. Third-
order formulations that incorporate transverse normal and shear strains were applied to
cross-ply and angle-ply plates having attached piezoelectric layers in Refs. [27] and [62],
respectively. Inclusion of transverse and normal strain effects was found to be important
in cases of electrically loaded thick plates.

Shen and Weng [44] employed a finite element formulation to study the effect of coupling
between the strain and electric fields on deformation control of laminated composites. Sensor
electrical outputs due to thermal loadings, as well as actuator voltages needed to reduce thermal
deflections were analyzed. The results indicate that the larger the piezoelectric coefficient d31, or
the thinner the structural portion of the plate, the larger the coupling will be.

Lee and Saravanos [34,35] formulated a layerwise laminate theory to model both the active
and sensory responses of piezoelectric composite plates. Results of their study demonstrate
capabilities to achieve thermal shape control, and indicate the importance of temperature
dependent nonlinearities on the displacement and stress distributions.

A comprehensive study assessing computational models for thermoelectroelastic
multilayered plates was presented by Tang et al. [46]. Numerical results show that of the
approaches considered (first-order, third-order and discrete layer theories, and predictor-corrector
procedures), the predictor-corrector approach, in which first-order theory represents the predictor
phase and the corrector phase modifies the functional dependence of the displacements on the
thickness coordinate, provides the most accurate results.

Laminated Shells
A piezothermoelastic analysis of a circular cylindrical laminated shell subject to

axisymmetric thermal or mechanical loading was presented by Chen and Shen [20]. Exact
solutions were found using the power series expansion method. Both direct and inverse
piezoelectric effects were considered. Numerical results for cross-ply laminates having attached
piezoelectric layers demonstrated that certain commonly made assumptions (e.g., neglect of
transverse normal and shear effects; the assumption of a linear variation of electric potential
across a piezoelectric layer; etc.) are not always reasonable.

Xu and Noor [59] derived analytical three-dimensional solutions for the fully coupled
thermoelectroelastic response of hybrid multilayered cylindrical shells. Sensitivity coefficients
were employed to study the sensitivity of static shell response to variations in various shell
parameters. Numerical results for graphite-epoxy/PZT laminates showed that the effects of the
thickness ratios and locations of thermoelectroelastic layers on the shell response to
thermomechanical and electric loads. The authors further derived three-dimensional solutions for
free vibration problems of initially stressed laminated cylindrical shells [61]. Kapuria et al. [30]
also presented three-dimensional solutions for simply supported cylindrical hybrid shells,
including consideration of potential differences applied across piezoelectric layers. They also
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obtained exact solutions for a simply supported cross-ply cylindrical panel [32]. Feasibility of
reducing thermal deflections and stresses by actuating a piezoelectric layer, and effectiveness of
various actuating schemes for shape control, were also investigated.

A large-deformation piezothermoelastic thin shell theory was developed by Tzou and Bao
[54]. Applications and simplifications of their generic theory to a laminated shell and other shell
continua, e.g., shells of revolution, spherical shells, cylindrical shells, and conical shells, were
demonstrated. They further considered a laminated cylindrical shell having distributed
piezoelectric layers [55]. Their results for multi-field step and impulse responses showed that
displacements induced by mechanical and temperature excitations are in-phase, and the electric
induced displacement is out-of-phase; accordingly, electric excitation can be used to control
thermomechanically induced excitations.

CONCLUDING REMARKS
Results from the investigations reviewed in this paper illustrate that thermal loads and

resulting piezothermoelastic responses can be inferred from measurements of induced electric
potential distributions in piezoelectric sensors. Likewise, through application of appropriate
electric potentials to distributed piezoelectric actuators, thermal displacements and stresses can
be controlled. The potential thus exists for forming high-strength, light-weight intelligent
composite structural systems.
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INTRODUCTION

The classical plate theory traditionally called Kirchhoff theory (K-theory) was de-
veloped from 1811 to 1883 by S. Germain, J.L. Lagrange, S.D. Poisson, A.Navier,
G.R. Kirchhoff, M.J. Bousinesq, M. Levy, W. Thomson and P.G. Tait. Historical
treatises [1, 2, 3] conclude that the main contribution to the plate theory was that
of Poisson, Kirchhoff, Thomson and Tait. Brief discussion of the corresponding
results is given below.

Decomposing stresses and displacements into power series with respect to the thick-
ness coordinate Poisson was the first to derive the modern form of the plate theory
equations (Lagrange was the first to write the biharmonic equation of the plate
theory but his derivation is not known). Poisson [4] had formulated the boundary
problem of the plate theory which included three boundary conditions at the bound-
ary points while the governing equation, being of the fourth order, required only
two conditions. This inconsistency was criticized by Kirchhoff [5] who developed
the plate theory using variational approach and a system of physical assumptions
which were the generalization of Bernoulli-Euler beam theory assumptions. Kirch-
hoff variational equation was the same that was derived directly by Poisson but it
was accompanied with two natural force boundary conditions. One of them spec-
ifies bending moment M,, at the plate edge and the other one is associated now
with the so-called generalized transverse shear force which is a combination of an
actual transverse shear force Q•, and a derivative of a twisting moment M, 8 along
the boundary contour, i.e.

S0--7-(1)

Here, n is a normal to the boundary contour and s is a contour coordinate. Kirch-
hoff did not discuss the physical meaning of the boundary conditions and a prob-
lem of "reconciliation" of Poisson and Kirchhoff plate theories appeared later in
the theory of elasticity. This problem was resolved by Thomson and Tait [6] who
had constructed a generalized transverse shear force (1) using static transforma-
tion that, in general, was valid only for an absolutely rigid body. For an elastic
plate, a moment effect is different from that of a force, and, as shown below, Kirch-
hoff boundary condition, being mathematically exact, is a formal result reflecting
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physical inconsistency of the K-theory assumptions. The fact that the generalized
transverse shear force V, does not represent completely Q,, and M,, acting at a
plate edge was cleared out in the nineteenth century. L6vy, Boussinesq, Thomson
and Tait formulated a three-dimensional elasticity problem for a plate loaded at
the edge with self-balanced nonzero force Q,. and moment MX, such that V,, = 0.
Solution of this problem has shown that such loading induces a specific stress state
of the plate corresponding to the edge twisting which rapidly vanishes within a
short distance from the edge. Modern interpretation of this approach was devel-
oped by Donnell [7]. L6vy was the first who introduced the idea to supplement
the K-theory with the second-order equation describing the boundary layer stress
state [8], but this idea was not supported [9, 10, 11] probably because the K-theory
was a two-dimensional theory, while L6vy equation included derivatives with re-
spect to all three coordinates. Instead of this, Saint-Venant principle was used to
justify possibility of neglecting L6vy equation and the corresponding stressed state.
However, Saint-Venant principle is only an intuitive statement that allows us to
simplify boundary conditions ignoring self balanced local loads. As known, there
exist problems to which it cannot be applied, and the plate problem is one of them.

Thus, the K-theory has become the classical plate theory, being successfully used
to solve engineering problems for more than a century. Though the study of plates
with the aid of three-dimensional elasticity equations never stopped [12], the next
significant result in the plate theory was obtained by E. Reissner [13] who derived
a set of two governing equations one of which was of the fourth order like the
equation of the K-theory, while the second was of the second order and actually
represented the two-dimensional version of Levy equation. Thus, a sixth order
Reissner plate theory (R-theory) has been developed. This theory allows us to
formulate three independent force boundary conditions at the plate edge for bending

moment M,, transverse force Q,,, and twisting moment M,, and Poisson-Kirchhoff
paradox disappears. To evaluate Reissner's contribution to the plate theory, it is
very important to emphasize that he was the first to show that in order to construct
a sixth order plate theory, we actually need to supplement the existing fourth order
equation for the plate deflection with an independent second order boundary layer

equation. By now attempts are undertaken to derive a sixth order equation for the
plate deflection, e.g. [11]

DAAW - CAAAW = p. (2)

Such an equation cannot exist in the plate theory under consideration (we discuss
here only theories that represent the plate stresses in terms of through-the-thickness
stress resultants and couples and ignore self-balanced stresses). Indeed, if we write
eq.(2) for a beam, we arrive at the sixth order ordinary differential equation for
the beam deflection that requires three force boundary conditions at the beam end,
while the beam stress state is determined by two static factors only, i.e., by a bend-

ing moment and by a transverse shear force. Thus, the shear deformable beam
theory is described by the fourth order equation and is entirely different from the
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corresponding plate theory which has an additional second order boundary layer
equation. This actually means that the R-theory is not a generalization of Timo-
shenko beam theory [14] and should not be called "Timoshenko-type plate theory"
as it is done in many publications. In general, association of the R-theory with a
shear deformable beam theory based on the fact that both theories allow for trans-
verse shear deformation is a common misunderstanding of the R-theory. Indeed, we
can study transverse bending of a beam taking into account shear deformation or
ignoring it, and in both cases this study can be consistent. However, in contrast to
beams, plates under transverse loading experience not only bending but also torsion
which cannot exist without transverse shear deformation. Ignoring this deformation
we arrive, as shown further, at physically inconsistent plate theory. Thus, allowance
for shear deformation is not optional for the plate theory, but follows from some
consistency conditions that are not satisfied in the K-theory [15]. Another common
misunderstanding of the R-theory according to which there exist several theories of
such a type (e.g. Reissner theory, Mindlin theory and etc.), is caused by the method
with the aid of which the R-theory was originally constructed [13]. To discuss this
important problem, consider a plate shown in Fig.1.

Z

Figure 1. Stresses acting in the plate.

In contrast to traditional displacement formulation of the plate theory [12], Reissner
used rather cumbersome stress formulation involving variational principle of min-
imum complementary energy and the following stress approximation with respect
to the z-coordinate.

12 12

T~~z -_-_------- h- ] •xy y=-£ - h ]Q xy) (4

Here M•, My and M~ are bending and twisting moments and Q•, Qy, are trans-
verse shear forces acting in the plate. It should be noted that stresses (3) and (4)
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actually follow from the K-theory. In conjunction with equilibrium equations of this
theory, i.e.

OM• OMv OMy aM~am., + XY Q o = 0 0-- + MXY Q, = 0 (5)
ax 9Y ay ax

OQ• O (6
ax-• ay =O 6

these stresses satisfy three-dimensional equilibrium equations of the elasticity theory
and boundary conditions on the plate surfaces (see Fig.1), i.e.

7'xzz h)= 0 Y__ h) 0.(7)

Displacement field corresponding to stresses (3) and coordinates shown in Fig.1 is
as follows

U = zOX(X,y) 9 = zOY(x,y) • = w(X, y), (8)

where w is the plate deflection and Ox, O, are rotations of the plate element in
xz and yz planes. Displacement approximation (8) was originally proposed by
Hencky [16] who, following Kirchhoff, applied variational principle of minimum total
potential energy to derive equations for 0., 0., and w. This approach was developed
and enhanced by Boll6 [9], Uflyand [17], Green [18], Mindlin [19] and many other
authors of refined plate theories allowing for transverse shear deformation of the
plate. However, Reissner in his numerous publications devoted to the R-theory did
not use displacement formulation because of possible loss of accuracy associated
with this approach [20]. Indeed, consider strain-displacement equations

ex = au __Y = -y = a-U.- + 0-2 (9)

,OuX a• O y ax (0aux eau au- au,

e a=z + ax ey -z + (---10)
+9 az a

and the Hooke's law for an isotropic plate

o,- = E(ex + vey) oY = E(ey + vex) rxY = Gexy (11)
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xz= Gexz = Geyz, (12)

where E G E
1 V-2  2(1 + v)'

Substitution of displacements (8) into eqs. (9), (10) and then into eqs. (11), (12)
yields

c= . (aox +o V 0 ~
- IOOX 00-fB ~ O~

ax ay y axj
(13)

( ay a
= + -, G= ((G +w . (14)

Comparing eqs.(3) and (13) we can see that for both stress and displacement for-
mulations distribution of in-plane stresses through the plate thickness is linear.
However, expressions (4) and (14) for transverse shear stresses are different. Dis-
placement formulation yields stresses that do not depend on z and do not satisfy
boundary conditions (7). In aforementioned publications devoted to displacement
formulation of the plate theory, this inconsistency was either ignored or camou-
flaged with the aid of average through-the-thickness displacements, transverse shear
strains, or strain energy. But irrespective of a particular derivation, final equations
are in their essentials the same that follow from the R-theory. The difference is
associated with different forms of the so-called shear correction factor which, as is
shown later, should not exist in the plate theory under discussion. Based on fore-
going discussion, one of the main objectives of this study is to demonstrate that
the R-theory can be constructed using displacement formulation in a consistent and
straightforward manner as simply as the K-theory is traditionally derived. From
this derivation it should follow that the plate theories based on approximations (3),
(4) or (8) are actually versions of one and the same theory which is the modern
form of the classical plate theory.

EQUATIONS OF THE PLATE THEORY

Consider again a plate show in Fig.1. To construct an applied plate theory, we
introduce a Basic Plate Element (BPE). This element is orthogonal to the plate
mid-plane, its length is equal to the plate thickness h and its dimensions in the x
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and the y directions are infinitely small. The theory that is considered below is
based on the following two physical assumptions following from the fact that the
plate thickness is relatively small.

1. Under plate bending the BPE (i) does not experience deformation in the z-
direction (e, = 0) and (ii) remains rectilinear and rotates at angles O0 and 0.,
in the xz and yz-planes, respectively.

2. Normal stress o, is negligible in comparison with stresses o', and O-y.

These assumptions are not discussed here because they practically coincide with
traditional assumptions of the K-theory that can be found in many textbooks. The
only difference is that the BPE is not required to be orthogonal to the deformed mid-
plane of the plate. Such a modification of the K-theory assumptions was proposed
by Boll6 [9] who introduced shear correction into rotation of BPE. It should also be
noted that assumptions 1(i) and 2 can be formally avoided if we simulate the plate
material with some orthotropic material having infinitely high stiffness in the z-
direction. This interpretation was proposed in the plate theory by Kromm [21], but
is not used here because we are aiming at the traditional straightforward derivation
of the plate theory equations given in the textbooks.

Using the foregoing assumptions and traditional procedure of the K-theory we arrive
at displacement field (8) and constitutive equations (11) which can be reduced to
eqs. (13). Because stresses (13) are linear functions of z, they are statically equivalent
to moments.

h/2 h/2 h/2

M, f ouz dz M,= J or, zdz Jý, f .y z (15)
-h/2 -h/2 -h/2

Substituting stresses (13) into these equations we arrive at constitutive equations
of the plate theory, i.e.

M -= D(K,, + vtcy) My D(ry + vi,)

M.= 1 I - v)c,

where
O9 o. Y a~ X aoý'+ ~ (16)

9- 'x a-oy Ox

are rates of BPE rotations ,and D = Eh 3 /[12(l - v2)] is the plate bending stiffness.

Now consider transverse shear stresses i-r and r7 specified by Eqs.(12) and (10).
Their particular form (14) that does not allow us to satisfy boundary conditions
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(7) is a result of nonproper transformation. First, it should be taken into account
that eqs.(8) specify approximate dependence of displacements on z. Second, in
general, approximate expressions cannot be differentiated. Thus, substitution of
eqs.(8) into eqs.(10) requiring differentiation with respect to z is not consistent and
cannot be performed. Moreover, it is not necessary to perform it because we do not
need to know r,, and r,,, to construct the plate theory. Indeed, as follows from the
first of the foregoing assumptions, BPE is absolutely rigid in the z-direction. So,
according to the well known theorem of statics, the BPE motion does not depend
on distribution of r,z and r., along its length (plate thickness). The plate deflection
depends only on resultant forces

h/2 h/2

Q: = J ,, dz Q,= J rdz. (17)
-h/2 -h/2

Particularly, this means that the behavior of the plate whose displacements corre-
spond to eqs. (8) does not depend on r., and r,, distribution through the plate
thickness. So, no shear correction factor which is traditionally used to take into
account this dependence should exist in the plate theory under consideration.

Thus, instead of differentiating the displacements (8) we should perform integration.
In conjunction with eqs.(8), (10), and (12), the first expression in eqs.(17) yields

h/2 r~ý ah h/2 1U a_ I OuA Ifh\(h o 8u
QX= G f + ýa Tdz G _() u_(- dz =Gh 0+

-h/2 -h/

Then, we arrive at the following constitutive equations for transverse shear forces:

- + D =C , (18)

where C = Gh is the plate transverse shear stiffness.

Proceeding to construct the plate theory we should use equilibrium equations (5)
and (6) of the K-theory and substitute moments and forces from constitutive equa-
tions (15) and (18). To derive the first equation, substitute forces Q. and QJ, from
eqs.(5) into eq.(6) to get

0 •+ 2 =2•---u+0M + p = O. (19)

Ox 2  OxOy 8y 2
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Expressing moments in terms of rotations with the aid of eqs.(15) and (16) we can
reduce eq.(19) to the following form:

DA +p=0, (20)

where
Sa2() + a2()

ax 2  ay2

Equation (20) allows us to introduce a potential function V(x, y) such that

Ox o O- (21)

Then, eq.(20) acquires its final form

DAAW = p. (22)

Consider now eqs.(5). Substituting moments and forces from eqs.(15) and (18) and
taking into account eqs.(16) and (21) we arrive at

t9 Fw 0 oFW = 0, (23)Ox F0Oy

where
Fw = DA - ýp-+w

and, D = D/C. As follows from eqs.(23), F. = constant, and since we need only
derivatives of ýp in eqs.(21), the constant can be included in Vo. As a result, we get
F = 0 or

w =-DAW. (24)

It looks like the theory is reduced to a fourth order equation (22). However, the
theory has one more equation. Indeed, expressing 0., and O, in terms of function p
we actually restrict a plate displacement field to a potential field with zero rotation
in the xy plane, i.e.

2 Oy ax3
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This condition can be readily checked if we use eqs.(8) for displacements and eqs. (21)
for rotations.

As follows from eq. (20), its homogeneous form (p = 0) has another solution, i.e.

ax O=V - , (26)O a= y ax

where O(x, y) is a rotational potential or a stream function [22] specifying rotation
in the xy plane. Indeed, using eqs.(8) for displacements and eqs.(26) for rotations
we find from eq.(25). a20 

(27)
ax ay,

Rotation field (26), (27) corresponds to p = 0, which means that it can be induced
only by forces and moments acting at the plate edges. If we repeat the derivation
of eqs.(23) using eqs.(26) instead of eqs.(21), we arrive at

aF __,

ax ay
where

20FO = AO _ 827p S2 _ 2 . (28)
D(l -uv)(

Resulting equation is derived in the same manner as eq.(24) and has the form

AO-S 20 = 0. (29)

Because the problem under consideration is linear, superposition of potentials yields
the following general solution for eq.(20):

09- 0qo0 +¢ 0a V) 0¢ (30)
- x a+ 19 aY ax

where potentials W and i are the solutions of eqs.(22) and (29), respectively. The
plate deflection is specified by eq.(24). Using eqs.(15), (16), (18), (24), and (30) we
can write moments and forces in terms of potentials as
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["2 P + -v "2V 1) 02V)
MX= -D 1 2x2 -- -yOx 4y]

My = -D _-fy + V, V 1-•)Ozy
&2~c +2  0X2 19•]h

M V = D [(1- v) c'2V + (C2 __ - (31)

Qy = C-ao - D Ly AV

Knowing moments and forces we can find stresses. The resulting expressions for
stresses are, naturally, the same as those of the K-theory, and are specified by
Eqs.(3) and (4). Equations of the K-theory formally follow from the foregoing
equations if we assume that transverse shear stiffness C is infinitely high (in the
limit, C -- oo) or b = 0. The principle consequences of such transformation
follow from eqs.(22), (24), (29), and (30) yielding

aw aw
S= 0 ,o=w 93•= -- V DAAw =-p. (32)

In conjunction with eqs. (8) this means that the K-theory restricts the plate dis-
placements to a very particular and specific case. In-plane displacements ux and uy
form a potential displacement field (without rotation), and the potential function
is the plate deflection. As shown further, this is the actual reason because of which
the K-theory is not consistent.

CONSISTENCY AND BOUNDARY CONDITIONS

Consistency of the boundary problem is an important (but not always necessary for
applications) feature of a plate or shell theory constructed by reduction of three-
dimensional elasticity theory equations to two-dimensional equations. Because a
unique and conventional criterion of consistency does not exist, we use the following
two conditions to evaluate the consistency of a plate theory formulated in terms of
displacements [15].

1. Boundary conditions of a consistent theory should correspond to the order of
the governing equations and, within the framework of the theory assumptions,
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should provide zero stresses at the free edge and zero displacements at the fixed
edge of the plate.

2. Equations derived by direct consideration of equilibrium and deformation of a
plate element should provide stationarity of the corresponding two-dimensional
total potential energy functional (Lagrange functional), and stationarity con-
dition of this functional should provide equilibrium of a plate element as a
solid.

As shown below, the sixth order theory described in the previous section satisfies
both consistency conditions, while the K-theory (as well as the majority of nonclas-
sical plate theories constructed by now) does not satisfy them.

Starting with the first consistency condition consider typical boundary conditions
for a plate described by the sixth order theory and the fourth order K-theory. For
the sake of brevity, boundary conditions are written only for the edge x = constant
of a plate shown in Fig.1 (commutation rule can be used to write the corresponding
conditions for the edge y = constant).

Let the plate edge be fixed (clamped or built in). According to the consistency
condition, we have for this edge ux = 0, uY = 0, u, = 0. Then, eqs.(8) and
(32) yield conditions 8. = 0, Oy = 0, w = 0 for the sixth order theory and
w = 0, Ow/Ox = 0 for the K-theory. These conditions correspond to the orders of
equations for both theories.

For a plate with free edge, we get ar = 0, ry = 0, rx, = 0, and eqs.(3), (4) give
MX = 0, Mxy = 0, Qx = 0 for the sixth order theory. After some transformation
with the aid of eqs.(31) and (29), these conditions can be presented in the following
form [23]:

+ V _- --1 (1 - v) = - 0 (33)Ox--- + y2 OX ay

ax [2-x + (2 - u) y- D (1 - v) a2 Aý] =0 (34)

W 0¢ =0. (35)ax 0-7

For the K-theory, we should take W = w, 4 = 0, and D = 0 in these conditions.
Then eq.(35) disappears and eqs.(33) and (34) yield the well known two boundary
conditions of the K-theory [12]

a2w 02w a3w 03w

S±(2 - v) ý =0 . (36)5X Oy2 OOxOy2
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It should be emphasized that the second of these conditions corresponding to the
generalized transverse shear force (1) is derived here without variational calculus
used by Kirchhoff and without static transformation used by Thomson and Tait. It
should also be noted that conditions (36) do not provide zero shear stresses at the
free edge of a plate (only some combination of r,, and 7-,, is zero). So, the K-theory
does not satisfy the first consistency condition formulated above.

Consider a classical simply supported plate with the following boundary conditions:

w = 0 OY = 0 M. = 0. (37)

After some transformation [23] we can write them as

S -92 0 -- = 0. (38)ýX2 ýx

For the edge y = const (see Fig.l), the conditions under study have the form

=0 _ _ 0 0- . (39)
9y 2 ~ay

As can be shown [23], eq.(29) with boundary conditions (38) and (39) for ¢ has
only trivial solution ¢ = 0. Thus, for a plate with simply supported edges, the sixth
order theory yields the following boundary problem:

DAAV = p Vb = 0 A~ b = 0, (40)

where pb corresponds to the boundary. Boundary conditions (37) imply that the
plate is supported by boundary walls (diaphragms) that have infinitely high mem-
brane stiffness and zero bending stiffness. Within the framework of the sixth order
theory, there exists another set of boundary conditions for a simply supported plate,
i.e.

w = 0 M.Y = 0 M, = 0. (41)

These conditions correspond to a plate with free edges resting on supports. Bound-
ary problem with conditions (41) was studied by Kromm [21] and Donnell [7].

Now consider the second of the foregoing consistency conditions. The total potential
energy of a plate loaded with normal pressure p can be written as
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TrJJ {l [~..M ry (or-y±X1+ +0 V+ PW} dx dy.

(42)

Stationarity condition 6T = 0 provides equilibrium equations for a plate element
and a set of natural boundary conditions. For the sixth order theory, variation with
respect to Ox, Oy, and w yields all three classical equilibrium equations (5) and
(6) and the associated boundary conditions discussed above. Thus, the consistency
condition is satisfied. For the K-theory, on the other hand, 0, and 0y should be
expressed in terms of w with the aid of eqs.(32), and we have only one kinematic
variable, w. Variation with respect to w yields eq.(19) which is not an equilibrium
equation. Equation (19) is only the result of a formal combination of the equilibrium
equations. It should be emphasized that within the framework of the variational
approach, eq.(19) appears irrespective of the equilibrium equations (5) and (6) and
has no physical meaning.

Thus, the K-theory does not satisfy the consistency conditions. The reason for this
is associated with eqs.(32) for 0, and 0.. Indeed, in the case of bending, the plate
element as a solid has three degrees of freedom - two rotations, 0-, and 0, and
one displacement, w. Variational equations provide equilibrium of this element as
a solid only if these kinematic variables are mutually independent which is not the
case for the K-theory. This theory is based on physically inconsistent approximation
of the plate displacement field which results in violation of equilibrium conditions
for any problem of transverse bending to which the theory is applied.

EXAMPLES

As the first example demonstrating the difference between the sixth order theory
and the K-theory, consider the most widely known problem of bending of a simply
supported rectangular plate loaded with uniform pressure p. Boundary problem in
eqs.(40) has a well known Navier-type solution in double trigonometric series [12]
providing the following plate deflection:

16p I +- 2+A2)
-rV !I'• sin (Ax) sin (Any), (43)

(A2D A2 )2

where A. = 7rrm/a, A, = 7rn/b and a, b are the plate dimensions.

The term including D) allows for transverse shear deformation. For thin plates,
this term is relatively small and can be neglected. Then, eq.(43) reduces to the
corresponding solution in the K-theory. However, there exists a principal difference
between the two theories under consideration. In the sixth order theory, reactive
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forces at the supported edges of the plate are Q. and Qy. Their resultant force is F =

pab and provides the total force that balances the plate as a solid. In the K-theory,
reactive forces are V•, and V. specified by eq. (1), and their resultant force is larger
than F. To maintain the balance, concentrated corner reactions are introduced [12].
However, there are no corner forces in this problem, and violation of the balance
condition is a natural consequence of the K-theory. Navier-type solution that can be
readily obtained for the corresponding three-dimensional elasticity problem shows
no corner forces. It should also be mentioned that traditional interpretation of
corner forces for a simply supported plate [12] is not adequate. Kromm's solution
[21] which is used for this interpretation corresponds to a different problem, i.e., to a
plate with boundary conditions (41), while solution (43) which is under discussion
corresponds to boundary conditions (37). Thus, the solution following from the
sixth order theory does not requireany corner forces and is not only more accurate,
but also simpler than the solution provided by the K-theory.

As another example, consider a problem of torsion of a rectangular plate by twisting
moments my uniformly distributed along the plate edges. This problem has a
simple solution following directly from eqs.(37), i.e.

w== = mxyxy Mxy = mv M. = MY = QX = QV = O. (44)
D(l - v)

However, the K-theory gives a different interpretation of this result. According to
this interpretation, solution (44) corresponds to the plate twisted by four corner
forces P = 2my. This immediately leads to violation of equilibrium conditions.
Indeed, if forces P are not the result of formal transformation but real forces,
considering a quarter of the plate we can see that the only one remaining corner
force cannot be balanced [24].

Now complicate the foregoing problem assuming that the twisting moment is dis-
tributed only along transverse edges x = 0 and x = a (see Fig.1), while longitudinal
edges y = 0 and y = b are free. As can be readily seen, this problem cannot be
solved within the framework of the K-theory. Meanwhile, the sixth order theory
provides eq.(29) whose solution can be used in conjunction with solution (44) to
satisfy boundary condition My = 0 for y = 0 and y = b [25].

As a more specific example, consider a contact problem. Let a plate be loaded
through a shallow and absolutely rigid indenter whose surface is specified by a
polynomial of the second order with respect to coordinates x and y. Then, the
plate deflection within the contact area is also the polynomial of the second order,
and therefore AAw = 0. As follows from the last equation of eqs.(32), in this case
the K-theory yields p = 0. This means that, in contradiction with the common
sense, there is no pressure between the plate and the indenter. The sixth order
theory gives a different result. If we express V in eq.(22) in terms of w with the aid
of eq.(24) and take into account that ŽAw = 0, we arrive at the following equation;
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DAp -p = 0.

Solution of this equation specifies a finite and nonzero contact pressure distribution
between the plate and the indenter [23].

And finally, consider a numerical example. Let the plate be infinitely long in the
x direction and its longitudinal edges y = 0 and y = b be simply supported. The
plate is loaded with pressure p = po sin Ay, where A = 7r/b and has the following
parameters: h/b = 0.05, v = 0.3.

Substituting W = Vo0(x) sin Ay and 0 = O0 (x) cos Ay into eqs.(22) and (29) we arrive
at two ordinary differential equations for Wo and Oo. For a plate with free edge
x = 0, solutions of these equation should satisfy the following boundary conditions
at this edge: M. = 0, Mxy = 0, Qý, = 0. For the K-theory, there is only two
boundary conditions, i.e. Mx = 0 and V, = 0, where Vx is specified by eq.(1). The
theories under consideration yield the following solutions for the plate deflection
[23].

[ [1 + 0.1 78 e-X (I - 1.69 b)] sin Ay

WK= D + 0.169e-A (1-1.69 b)]sin Ay.

As can be seen, the results are very close. The difference shows itself for transverse
shear force Q, for which the sixth order theory provides

0.64P (e-A - e') sin Ay, (45)

where s = 69.35/b. It can be seen that s is much higher than A = 3.14/b. Equation
(45) consists of two parts - relatively slowly varying part which corresponds to
potential W and is called a penetrating solution and rapidly varying part which
corresponds to rotational potential 0 and is referred to as a boundary layer solution.
Expressions corresponding to the K-theory do not include a boundary layer solution
and are as follows

Q. = 0.606 eA- sin Ay V= 0.67 -v xe-A sin Ay.
A Ab

Distributions of normalized forces = QAl/pv and V = VA/pv along the supported
edge are presented in Fig.2. As can be seen, generalized shear force V, formally
satisfying the boundary condition V (x = 0) = 0 is not a resultant of shear stress.
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This conclusion is far from being only of an academic interest. In all existing
textbooks, design guides, and computer codes, interaction between plates, plates
and .ribs, and plates and supports is described in terms of V which can be completely
different from the actual interaction force. For example, if the edge x = 0 of the
plate considered above is simply supported, the difference between maximum values
of the actual reaction Q, in eqs.(45) and force V2 is 35%.

0.56ýNO.'s b

0.4

0.3 y

0.2

0.1
d- x/b

0 0.2 0.4 0.6 0.8 1

Figure 2. Variation of transverse shear forces with the longitudinal coordinate
along the supported edge at the plate

Qx, sixth order theory

Q., K-theory

V•, K-theory

ASYMPTOTIC ANALYSIS

The boundary layer effect described above is typically ignored on the basis of asymp-
totic considerations. However, as it will be demonstrated in the following section,
this effect may not be ignored, in the general case.

Equations describing thin-walled structural elements include a small parameter. For
plate theories, this parameter is h = h/a, where h is the plate thickness and a is
the smallest in-plane dimension. For thin plates, h <K 1, and useful information
can be obtained about the solution if we study its asymptotic behavior for h -- 0.
To perform asymptotic analysis, introduce dimensionless coordinates T = x/a and

= y/a. Then, eqs.(22), (24), and (29) can be presented in the following form:

AAo 12pa (46)
Eh3
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w = ý_ h2_ -)(47)

h2AO - 120 = 0. (48)

Here, A is Laplacian operator in coordinates x, y.

Equation (46) shows that the asymptotic order of function W is h(- 3) and that its
derivatives are of the same order that of the function. The second term in the
right-hand side of eq.(47) is of higher asymptotic order then the first term and can
be neglected. So, asymptotic order of w is also h(- 3). From eq.(48), we see that
the function 0 acquires large multiplier h(- 1) after each differentiation which means
that b is a rapidly varying function. Thus, the solution of the problem under study,
in general, consists of two parts - slowly varying penetrating solution (W or w)
and rapidly varying boundary layer solution (4). As can be shown by asymptotic
analysis [26], for thin isotropic plates, the boundary layer solution can be neglected
in comparison with penetrating solution.

Under this simplification, the sixth order theory formally provides the same equa-
tions that the K-theory. However, this simplified theory is not the K-theory because
it does not include generalized shear forces V and corner forces. Numerous solu-
tions of the plate theory problems obtained by now with the aid of the K-theory
show that for many practical problems (usually for those that do not require us to
introduce forces V) we can neglect the boundary layer solution.

However, there exist at least three reasons that do not allow us to neglect the
boundary layer solution in the general case. First, as was shown above, the plate
theory becomes physically inconsistent. Second, there is a class of plate problems for
which penetrating solution degenerates, and only boundary layer solution describes
the plate behavior (e.g., the torsion problem discussed above). And third, in some
cases, boundary layer solution can affect penetrating solution through boundary
conditions and change it. To demonstrate this, consider a square plate in the
domain -a/2 < x < a/2, 0 < y < a and having h = 0.01 and v = 0.3. Plate
edges y = 0 and y = a are simply supported, and edges x = ±a/2 are loaded with
transverse shear force and twisting moment

M
Q; = Q sin Ay MY= cos Ay,

where A = 7r/a. The K-theory yields the following solution for the plate deflection
[27]:

WK= V A0.211coshtx-0.155 xsinhx sin Ay.

Eh3  as
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Here, V = Q - M is, actually, the amplitude of the generalized transverse shear
force specified by eq.(1). The solution following from the sixth order theory is

W = W 1 + W2 ,

where

EV= [0.211coshAx-0.156 (sinh Ax-1.5h2 coshAx)] sinAy

W[0.012 cosh Ax + 0.26 (aG. sinh Ax - 1.5k 2 cosh Alx)] sin Ay."W2•Eh2a

As can be seen, WK and w, are practically the same and have asymptotic order
h(- 3). However, w includes w2 which is also a part of penetrating solution but is
induced by a boundary layer solution (interacting with penetrating solution at the
boundary) and has a higher asymptotic order (h(- 2)). In general, w, > w2, but if

V =0 and Q : 0, wK = 0 and w = w2. Thus, the plate deflection can be entirely
different from what follows from the K-theory.

Asymptotic properties of the solution discussed above can be used to simplify the
plate analysis in the sixth order theory. Following Reissner [28] we can assume that
the solution of eq.(48) that exists only in the vicinity of the plate edge varies rapidly
only in the direction normal to the edge and does not change significantly along the
supported edge. For the edge x = constant, this means that d2o/dx2 > d2 b/dy2,
and eq. (48) is approximately reduced to

h 2 d20 120 = 0. (49)d&:2

This equation can be readily solved, and its solution can be used in conjunction with
solution for eq.(46) to satisfy three boundary conditions at the plate edge. Thus,
the problem is actually reduced to eq.(46) which is the same that the governing
equation of the K-theory.

However, there exists a problem associated with the sixth order theory. This is the
so-called shear-locking problem in finite element analysis based on shear deformable
plate theory [29]. This effect causing the loss of accuracy is associated with differ-
ent asymptotic behavior of terms corresponding to bending and shear in energy
functional (42). Shear-locking occurs because low-order polynomials used in finite
element analysis as shape functions cannot approximate rapidly varying boundary

layer solution. If this solution is singled out and described with the aid of eq.(49),
shear-locking disappears [30].
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CONCLUSIONS

The plate theory is shown to be physically consistent if it is reduced to a set of two
partial differential equations. One of these equations corresponds to the governing
equation of the classical Kirchhoff plate theory, and the other equation has been
introduced into the plate theory by Reissner. According to the proposed interpre-
tation, these equations compose a new plate theory that is entirely different from
theories originally constructed by Kirchhoff and Reissner and can be referred to as
a modern form of the classical plate theory.
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DETERMINATION OF FILLER CONTENT OF WOOD-BASED

COMPOSITES BY THERMOGRAVIMETRIC ANALYSIS

M. Y. AHMAD FUAD*, S. RAHMAD and M. R. NOR AZLAN
Polymer Technology Laboratory, SIRIM Berhad, P. 0. Box 7035, 40911, Shah Alam, Malaysia

ABSTRACT
Oil palm wood flour (OPWF), a new type of wood-based filler for polypropylene composite has been
investigated. One important characterisation of the OPWF composites involves the checking for the
actual filler content and filler distribution within the matrix. The application of thermogravimetric
(TG) analysis technique for evaluating filler content in composites have been described by many
thermal analysts but the scope of analyses were often limited to mineral-based fillers or carbon black
content determination. Filler content determination of wood-based filler using similar technique,
however, poses a problem since the fillers themselves usually degrades earlier than the matrix material.

Here we report how filler content of wood-based fillers may be computed from selective
thermogravimetric analyses. The computation of the OPWF content in the composites is based on a
simple expression, pf = T(mlmC) derived from the analyses of the TG curves of the filler material and
the resultant composite. Constant T is a factor related to the mass losses of the filler and the matrix
materials when subjected to a specified temperature range and is specific to the particular type of
wood-based filler used. The technique has shown good agreement and consistency between the
analysed and theoretical filler content and also has indicated that the composites have a uniform filler
distribution.

INTRODUCTION

The applications of other wood-based fillers have been described by many workers. 8"10

The fillers were incorporated into the polypropylene matrix by various means such as
by a two-roll mill or through an extruder. Accurate filler loadings and excellent filler
dispersion were normally assumed. However, attempts were seldom made to support
these assumptions scientifically. Filler losses during compounding or mixing
processes and agglomeration of filler in the composites are not uncommon, thus the
significance of the filler content and dispersion analyses.

For mineral-based filler that can stand substantially higher temperature than
the matrix material, the matter is easily resolved by burning off the entire resin at high
enough temperature leaving behind the inorganic filler behind for quantification.
Glass fibre content of glass-reinforced plastics may be determined in this manner
using furnace up to say 600 °C.

The choice of purging atmosphere in thermogravimetric (TG) analytical
technique depends on the nature of fillers; for inert inorganic fillers such as glass, talc,
silica and mica, flowing air or oxygen is preferred to virtually burn off the matrix
materials. For organic fillers such as carbon black in polypropylene matrix, inert
nitrogen atmosphere will be more suitable so that only the matrix polypropylene will
disappear through thermal degradation without affecting the carbon content
significantly." If the matrix material does not completely volatilize and leaves behind
some ash, then introduction of air is necessary at high enough temperature (550 °C) to

* To whom correspondence should be addressed.
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oxidise the carbon component and thus separating it from the ash for quantification
purpose.2 Applications of this technique for evaluating filler content have been
described by many thermal analysts but the scope of analyses were often limited to
mineral fillers and carbon black determination .*3-4

Determination of wood-based fillers using similar technique, however, poses a
problem since the fillers themselves usually degrade or carbonise together with the
matrix plastics. In this present study, a relatively new type of wood-based filler is
being investigated. The origin of the filler is from the trunk of an oil palm tree (Elaeis
Guineensis), hence the term oil palm wood flour (OPWF) filler. Here we wish to
report how filler content in wood-based composites may be calculated from simple
expressions derived from selective thermogravimetric analyses. Filler contents of
almost all the OPWF composites were conveniently determined with good accuracy
and precision by these methods.

EXPERIMENTAL

The OPWF was compounded into polypropylene by means of a Brabender DSK 42/7
twin screw compounder having barrel temperatures of 170 to 190 °C from feeding
zone to the die zone respectively. Four levels of loadings were prepared by
compounding 20, 30, 40 and 50 parts filler to 100 parts resin resulting in theoretical
filler content (by mass) of 16.7, 23.1, 28.6 and 33.3% respectively. The compositions
and markings of the OPWF composites are as shown in Table 1. The compounds
were extruded through a twin 4-mm rod die into a water bath, pulled and pelletized.

A highly filled composite at 50% filler content was also specially prepared
using a Brabender W50E mixer to cross check for an apparent discrepancy in the
analysed content of the OPC4 sample. While all the previous samples were prepared
by the twin-screw compounder and injection moulding process, this sample (OPCM)
is prepared solely using a mixer with a five-minute mixing time. Mixing was
performed by a pair of counter rotating rotors at a temperature of 180 'C.
Thermogravimetric analyses were performed on specimens taken from 3 different
parts of the composite.

Thermogravimetric Analysis

The OPWF composite sample was scanned from 30 °C to 550 "C using a Mettler
TG50 thermogravimetry analyser. The heating rate was 20 °C/min. and a nitrogen
purge gas with a flow rate of 200 ml/min. was applied. Great care has to be exercised
in the analysis of the OPWF filler content as the filler degrades earlier than the
polypropylene matrix as shown by the thermogravimetric scans in Figure I. Whilst
quite a substantial amount of degradation (carbonisation) of the OPWF has occurred
at 380 "C, there seems to be hardly any significant degradation of the polypropylene
matrix (as shown by the derivative thermogravimetric curve, DTG) up to this point.
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Thus this temperature may serve as the upper limit of analysis in our subsequent
computation for the OPWF content in the composites.

Step analysis of the neat OPWF thermogravimetric scan from 50 to 380 °C
shows a percentage mass drop of 62.6%). If similar step analyses are carried out on
the OPWF composites' samples within the above range, then the amount of filler
present in each of the composites may be calculated. Basically there are two methods
for calculating filler content. First, a simpler method where it is assumed at the
mentioned temperature range, there is negligible mass loss due the matrix
polypropylene and the entire mass loss is solely due to OPWF filler. The second
method takes into account mass loss due to polypropylene component as well.

Step Analysis (PP)
Height -0.22 mg

-2.39 X

ResiC. 9.19 mg
97.86 %

Step Analysis (OPWF)
Height -5.34 Mg

-62.63 %
ResiC. 3.01 mg

35.29 %
Opeak 321.3"C

0oo. 200. 300. 400. 500. "c

Figure 1 Step analyses of TG scans of PP and OPWF between 500 C and 3800 C.

Method I

If the initial mass of the composite sample subjected to thermogravimetric scan is m,
and drop in mass at the above temperature range is md, then the amount of filler, mf in
the composite will be:

mf = md(100/ 6 2 .6) (1)
Percentage filler content, pf will be:

pf = 100(mtmc) (2)
Combining equations (1) and (2), we get:

pf = 160(md/Imn) (3)
where
pf is the percentage filler content,
md is mass loss in the thermogravimetric scan from 50 to 380 °C and
mr is mass of composite sample in the thermogravimetric analysis.
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Method II

In method II, loss of mass due to matrix polypropylene is taken into account. Between
the 50 - 380 'C temperature range, it may be observed that there is a loss of 2.4% in
case of the neat polypropylene (Figure II). Thus polypropylene contribution to the
loss, mp may be expressed as:

mp = md( 2 .4 /100) (3)
Loss in mass due to filler only i.e., mf will be:

mf. = md - mp (4)
To calculate the amount of filler, equation (1) will then be:

mf = mf (100/62.6) (la)
Substituting the value of mf. in equation (la) will give the corrected filler content.

mf = 1.56md (5)

Combining equations (5) and (2) result in the percentage filler content in the OPWF
composites after correction has been made to account for the polypropylene mass loss
within the temperature range analysed.

pf = 156(md/mC) (6)
It may be seen clearly that the value for filler content after the correction is relatively
lower than that calculated by method I. In general term, equation (6) may be
expressed as

pf = t(md/mC) (7)
where T is a constant related to the mass losses of the filler and the matrix materials
when subjected to a specified range of a temperature profile..

To check for filler distribution within the final composite samples, the OPWF residue
levels were analysed at 3 different positions within the bar specimen: at the gate,
midpoint and end positions of the bar. If the values are close to each other, they give
good indication of uniform filler dispersion within the matrix.

RESULTS AND DISCUSSION

Results for the analysed OPWF contents in the composites are shown in Table I. The
analyses reveal that the determined filler contents in all the OPWF composites
(exception: OPC4 sample) are quite close to the percentage of the incorporated fillers.
As expected, the mean filler contents of samples OPC1, OPC2 and OPC3 are slightly
lower than the theoretical values due to filler losses during the compounding process.
Sample with the highest filler loading, OPC4, however, when analysed gives a
considerably lower value.
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Table I. Filler content of OPWF composites at different locations in injected samples.

Composite Theoretical
Sample Filler Measured Filler Content (%)

Content

(% by wt.) Position of Sampling

Gate Midpoint End Mean

OPC1 16.7 17.6 15.6 16.6 16.5 +/- 0.8#

OPC2 23.1 21.2 22.6 22.0 21.9+/-0.7

OPC3 28.6 25.7 25.3 25.6 25.5 +/- 0.2

OPC4 33.3 27.4 28.5 27.3 27.7 +/- 0.7

Position 1 Position 2 Position 3

OPCM 50.0 46.8 48.3 47.1 47.4 +/- 0.8

# standard deviation

This discrepancy may be attributed to higher filler losses relative to former samples. It
was observed during the compounding process, at too high a filler content, the mixing
process became less efficient, i.e. greater difficulty was encountered to incorporate the
filler. As feeding of the filler and resin was assisted by a dozing screw feeder,
occasionally at the earlier stage of compounding, higher proportion of the resin (than
the filler) tend to be fed into the compounder. Hence this discrepancy may be
attributed to inefficient mixing and not due to shortcomings in the analysing
technique.
To cross check for this matter, a highly filled composite (50 % filler content) was
specially prepared using an alternate processing technique, i.e., by a mixer. Analysed
filler contents of this sample (OPCM) taken at the three different locations give good
agreement to the theoretical value as shown in the last line of Table II. The mean
value of 47.4 % may be considered quite close considering the inevitable filler losses
during mixing process.

Uniform distribution of filler particles within the matrix in all the composite samples
was also confirmed by the thermogravimetric analyses. Filler contents at 3 different
locations of the specimen (at the gate, midway and at the end position away from
injection gate) were in close agreement to one another. The standard deviation value
for each sample was also noted to be small.

A typical plot of thermogravimetry scans for OPWF composites at various filler
loadings is shown in Figure 3.
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CONCLUSION

Strong evidence for the accuracy of the calculated filler content and the reliability of
the described technique are supported by the good agreement and consistency between
the analysed filler content and the theoretical incorporated values. The derived
expression, pf = P(md/mC) may be applied to other wood-based composites to
provide a simple and quick method for calculating the actual filler content. After
determining the constant T, all one have to do is to measure the mass drop, md and
knowing the initial composite mass, me, filler content, pf is easily computed. The
expression will enable workers to have a quick and convenient means of checking the
actual filler contents of their composites and its dispersion within the matrix.
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Quebec Canada GIK 7P4
INTRODUCTION
The conventional techniques of producing thermoplastic composites consists of heating

the matrix until it softens or melts, and then incorporating the solid substrate (filler or
reinforcement) at a given concentration. Strong mixing is often required to disperse the solid
substrate in the relatively highly viscous matrix. Several problems must however be overcome
when this simple and rather straightforward method is used. These problems are mainly related
to solid dispersion in the viscous matrix ; solid/matrix interactions and solid wetting by the
matrix. These are important parameters for a composite with desired properties to be obtained.
Great efforts have been devoted to partially overcome these problems. Several advanced and
rather complicated and expensive methods have been used to obtain better dispersion of solid
substrates in viscous matrices. Chemical modification of the solid substrate surface using
coupling agents (silanes or titanates) to promote adhesion at the polymeric/solid interface are
used on a regular basis (Katz and Milewski, 1978). The optimum choice is however to create
a chemical bond directly between the reinforcing agent and the polymeric matrix. In this paper
we will present the results of such approach with ultra high molecular weight high density
polyethylene and Thermoplastic/Poly(para-phenylene-terephtalamide) (Kevlar, a trade name of
Du Pont)) composites. The technique called Catalytic Grafting consists of grafting the
polymerization catalyst onto the surface of the solid substrate and proceed with the
polymerization of the monomer of the composite's matrix. Before we get to the experimental
procedure and experimental results, we shall first expose a brief review of the literature on the
subject of catalytic grafting.

REVIEW OF THE LITERATURE
This technique has been first developed by Enikolopian (1976) and Howard et al. (1981).

The technique consists of anchoring a polymerization catalyst (Ziegler-Natta catalysts in this
case) onto the surface of the reinforcing agent and then polymerizing what would represent the
matrix of the composite in the final product. Several reinforcements and fillers/polyolefin
composites have been obtained with this technique (Enikolopian et al. 1990; Wang et al. 1992-
a,b, 1993; Novokshnova et al. 1994; Casenave et al. 1996; Brahimi et al. 1996; Hyndricks et
al. 1997-a,b). In essence, the solid substrate plays a double role in this so-called Catalytic
Grafting technique: i) it plays the role of supported catalyst for the polymerization and ii) the
role of filler or reinforcement in the final product. The chemical bond between the
reinforcement surface and the synthesized polymer is easily hydrolysed in the steps following
the polymerization. However, due to the fact that the catalyst reaches areas that cannot be
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reached by a molten polymer in the conventional technique, the resulting mechanical interactions
in the catalytic grafting composites result in materials with enhanced overall properties as
compared to their counterparts obtained by melt mixing. All the results of the above cited
authors show the same trends. Moreover, the catalytic grafting can be used to "synthesize"
highly filled and yet well dispersed composites. The purpose of the present work is to use the
catalytic grafting technique to obtain highly filled Kevlar pulp/polyethylene composites. In the
conventional technique, Kevlar pulp is not easy to incorporate in a highly viscous matrix
(Rajabian, 1995). The method used here confirms the potential of the method to obtain
composites even with diffuclt reinforcement and also to evaluate the properties of relatively
highly filled composites obatined with such reinforcement.

EXPERIMENTAL AND MATERIALS
I-Materials
Kevlar pulp was graciously provided by DuPont Canada (Toronto, Canada). Ethylene and

nitrogen gases were purchased from Prixair company (Quebec, Canada). Triethyl aluminum (AlEt3)
and titanum tetrachloride (TiC14) were purchased from Aldrich company (Milwaukee, USA). Ultra
high molecular weight high density polyethylene (UMWHDPE) was synthesized in our
laboratory as described below. The commercial high density PE (07105C) was provided by
Dow Canada.

H-Experimental
Catalytic grafting of polymer on Kevlar fibers
Kevlar fibers have a relatively small amount of active sites 6n their surface for the first

step of the catalytic grafting technique to be successfully completed. In order to increase the
number of reactive groups on their surface, Kevlar fibers were chemically treated (hydrolysed)
as described earlier by Chatzi et al. (1987). Accordingly, 80 grams of Kevlar fibers were
immersed in 3200 ml of 10 w/w% aqueous solution of NaOH at ambient temperature for 10
minutes. Following the treatment, fibers were filtered and thoroughly washed with acetone and
then dried under vacuum for 24 hours.

The catalytic grafting reaction was carried out on the surface of hydrolyzed Kevlar fibers
in a home made reactor. The modified pulp was first charged in the reactor and allowed to dry
under vacuum at 110 C overnight to exclude water and air from the reactor and Kevlar fibers.
The temperature was then lowered to 60 and 2 liters of freshly distilled hexane (BDH co.) were
added to the reactor under a continuous current of nitrogen gas. The required volume of TiCl4

was injected into the reactor under continuous mixing and allowed to react with the fiber
surface for one hour at 60 'C. The catalyst in excess was removed by washing repeatedly with
freshly distilled hexane. The required volume of co-catalyst (AlEt3) was injected into the
reactor and was left for 5 minutes under mixing at 60 C in order to form the brownish complex
of catalyst and co-catalyst. Thereafter, ethylene gas was purged into the reactor and the
polymerization process starts and was maintained for 20 minutes. The reaction was then
stopped by addition of ethyl alcohol and the final product recovered and washed and dried at
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60 'C and under vacuum for 24 hours. The same reactor, materials and procedure were used
to prepare ultra high density polyethylene to be used later with the "synthesized" composite.

Mixing and molding
When needed, UMWHDPE and grafted Kevlar fibers were melt blended in a batch mixer

(Haake-Buchler Rheocorder System 40). Mixing was carried out at 180'C and 60 rpm for 10
minutes. Then, the resulting blend was removed and was air cooled to room temperature. The
resulting composites were molded into rheological disks and plaques from samples for thermo-
mechanical analysis were cut.

Rheological measurements
The dynamic measurements were isothermally carried out on a Bohlin CVO mechanical

rheometer (stress controlled rheometer) using parallel plate geometry (25 mm plate diameter)
at 1800C. The tests were performed at frequencies ranging from 0.004 to 62 rad/s. Stress sweep
tests were first carried out to ensure that the rate sweep tests are performed in the linear
viscoelastic zone of each material.

Thermo-mechanical measurements
Samples (42 x -5 x -1.3 mm) for this test were cut from a thin plaque prepared by melt

molding of composites or neat polymers in a special mold. Thermo-mechanical properties of
composite beams were measured using the Solid State Analyzer (RSAII from Rheometric
Scientific) with a dual cantilever geometry at temperatures ranging from -140 to 140 'C at a
constant frequency of 10 rad/s and a constant deformation of 0.2%.

Thermogravimetry
The percentage of the grafted PE on the surface of the Kevlar fibers was determined

using a themogravimeter from Metller company (TG 50 + TC 11 TA processor). A small
sample (10-15 mg) was put into a small crucible and was heated from 40 to 750 0C at a heating
rate of 20 'C per minute. The test was repeated three times for the grafted Kevlar fiber sample.
Analysis of the thermograms lead to the percentage of the grafted polyethylene since its
decomposition temperature is different from that of Kevlar.

RESULTS AND DISCUSSION
The thermogravimetric tests revealed that there is about 50% of UMWHDPE grafted

on the surface of the Kevlar fibers. The thermograms are not shown for the sake of brevity.
These composites were characterized without further modification or else used as master batch
to obtain lower fiber concentration composite when mixed with neat UMWHDPE. The
thermomechanical properties of these materials as well as those obtained for a commercial
HDPE and a neat UMWHDPE are shown on figures 1 and 2 for the storage modulus, E', and
the loss tangent, tanS, repectively (Ferry, 1987). The results of figure 1 show that blending the
synthesized composite with neat polymer to obtain lower concentration composites leads to
some complex behavior. Indeed, the results show that lowering the fibre concentration in the
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original composite does not necessarily lead to lower storage modulus. Moreover, the original
composite seems to have a relatively higher storage modulus over the whole range of
temperatures. The initial decrease of E' in the low temperature region is attributed to the glass
transition (y-transition) of the matrix. This is clearly shown on the loss tangent curves
represented in Fig. 2. The glass transition temperature as extracted from this figure varies from
- 117 0C to -122 0C. The glass transition temperature is slightly shifted towards lower
temperatures as the fibre concentration is increased. This might be attributed to better
interactions between the grafted polymer and the reinforcing fibers which limits the mobility of
the grafted chains as the proportion of the grafted composite is increased. The only other
transition that can be detected from Fig. 2 is the melt around 130 'C. This is typical behavior
for high density polyethylenes (Kumar and Gupta, 1978). The results in the melt state (at
180°C) are shown in Figs. 3 and 4 for the storage modulus, G', and the complex viscosity T"1

respectively (Ferry, 1987). The results of these figures clearly show that the synthesized high
density polyethylene is much more viscous than the commercial one supporting the fact that the
low pressure Ziegler-Natta polymerization without chain transfer agents, such as hydrogen,
invariably lead to ultra high molecular weight HDPE. The results also show that the storage
modulus and the complex viscosity of the 50% composite are much more higher than the
corresponding material functions for the neat UMWHDPE and the other composites. Again
this indicate that the grafted polymer is intimately mixed with the reinforcing agent. For the
other composites, the effect of fibre concentration is not very important. G' and if for the neat
polymers also indicate that the synthesized polymer is of ultra high molecular nature. Indeed,
the G' values for the synthesized polyethylene are almost constant (plateau) indicating the
presence of a highly entangled network associated with molecular weights (or polymer chains
lengths) much more above the critical molecular weight of the polymer (Ferry, 1987). The
presence of high molecular weight chains results in a displacement of the terminal zone of the
storage modulus toward lower frequencies. The amplitude of the displacement increases with
increasing molecular weight. Based on the viscosity data obtained for the neat commercial and
synthesized HDPE, and using the relation T10 = K Mw3"4 (Bird et al. 1987) where Tl, is the zero-
shear viscosity and M, the weight average molecular weight, M, of the synthesized HDPE is
estimated to be in the range of Ix10 6 to 1.7x106 (the Mw for the commercial HDPE is taken
between 150000 and 250000, which are the numerical values generally encountered for such
polymers).

Other results on this type of composites were also obtained by Rajabian on a similar composite
(Rajabian, 1995). Even though the basic materials are slightly different, the general trends
indicate that the overall mechanical properties (mainly impact properties) are much more
important for the catalytic grafted composites as compared to their counterparts prepared by
the conventional method. The rheological results of Rajabian (1995) also indicate that mixing
grafted fibers with neat polymers does not change significantly the rheological properties of the
composites as the fibre concentration increases. These results are similar to those obtained here
when the 50 % composite (the synthesized composite) is diluted with the synthesized
UMWHDPE. Here again, we attribute this difference to the difference in the mobility of the
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polymer chains on the fiber surface as compared to the free chains introduced by incorporating
the synthesized UMWHDPE. These results are in agreement with those obtained in the solid
state.

CONCLUSIONS
Highly loaded and yet well dispersed Kevlar pulp/Ultra high molecular weight

composites can be produced using the Catalytic Grafting technique. The rheological data in
the solid and the melt state indicate that the polymer is intimately mixed with the matrix. These
conclusions were drawn from the difference in the rheological behavior observed when the
composite recovered directly from the reactor is compared to composites at different
concentrations obtained from further dilution of the original one.
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INTRODUCTION

In the last few years the development of new materials has been oriented towards composite
materials, because they are more attractive systems with great significance for research and
industrial application. The reasons for developing these compounds mainly consists of
obtaining a material with specific properties and characteristics and low manufacture costs.

The addition of organic and inorganic substances (load) to polymers gives rise to changes in the
mechanical properties of the blends. These properties frequently exhibit complex behavior,
which depends on different factors, such as component properties, shape and size of the
disperse phase (load), morphology of the system, load surface treatment, molecular weight, and
polymer structure, among others, because both components are immiscible and incompatible.
Deterioration of the properties of these composite materials is the result of the presence of two
phases and the lack of adhesion in the interface.

Inorganic loads, such as glass, mica, talc, silica, calcium carbonate, are economically
accessible, but they increase rigidity and bring about a loss of elongation at break and tensile
strength [1,2,3].

Loaded PP is a plastic with low specific volume and there is a great deal of interest within the
industry in analyzing the use of different loads to extend the range of applications of the
product, which would result in lower raw material and finished product cost.

The focus of this work is using theoretical models to calculate the mechanical properties of the
PP blends with different loads, such as talc, sodium benzoate and phthalocyanine, and then
compare them to experimental values in order to explain the mechanical behavior of these
blends.

The mechanical properties of the PP blend with the different loads are simulated by means of
theoretical models and equations developed for heterogeneous systems. To apply the different
models, they have to be combined with the nature of the matrix and of the dispersing phase,
with the dimensions and distribution of the disperse particles and the extent and nature of the
interfacial adhesion.

THEORETICAL MODELS

Models of Nielsen [4], Cohen-Ishai [5], Guth-Smallwood [6] and Mooney [7] predict the
dependence of the yield module of heterogeneous blends on the composition.
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Nielsen and Lewis [4] proposed the following model:

Em I + ABfbd(

Eb l-BjlPkld

where:

B 1)+ (1-oDmax O-)'-d A=(8 -loVm)

Ed )

where, E: Young's modulus (Kg/mm2), 4d: fraction in volume or mass of the discrete phase, v:
Poisson radius. Subindices b, m and d refer to blend, matrix and disperse phase, respectively.

am,: is the volumetric fraction of the maximum packing, and can be used as interaction
parameter between both phases. A: constant related to the phase geometry, particularly for
spherical inclusions and depends on the Poisson radius and Y: factor which depends on the
maximum packing fraction and on the disperse phase fraction.

The models developed by Cohen-Ishai, Guth-Smallwood and Mooney apply when the disperse
phase is formed by rigid and spherical particles, whose functions consist of increasing rigidity
in the matrix phase, because they restrict mobility of the polymer molecules.

Cohen- Ishai (C-I):

Em I+ cld (2)
Ep I - (DI

Guth- Smallwood (G-S):

Em = 1+ 2.5ad + 14.1 (D2 (3)
E Pd

Mooney:

Em exp( 25(p,4 (4)

where E:- modulus of the pure polymer (Kg/mm 2) and Em: modulus of the composite matrix
(Kg/mm ).

As with Young's modulus, studies have also been carried out on theoretical models to describe
the phenomena occurring in the interface of the breaking point, where stress transference in
discontinuities of a two-phase'blend is analyzed. According to Nielsen [4], Nicolais and Narkis
[7] and others, strength properties are related to composition and volumetric fraction of a given
sample in which both phases are observed.
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Nielsen suggests an equation where an s factor is introduced, representing stress concentration:

T= (Q - )s GO (5)

Nicolais and Narkis suggest in the model presented by Nielsen, the incorporation of a weight
factor of 1.21. The resulting expression is as follows:

: co"(1 - 1.2 IV23) (6)

where, 9 and ý represent fraction in mass of the discrete phase, a: the breaking strength of the

blend (Kg/mm 2) and cro,: the strength of the matrix phase (Kg/mm2).

The model applied to analyze the mechanical property of elongation at break offers qualitative
information on the interfacial adhesion between the fillers and the matrix phase. The model
used was Nielsen's [4].

According to Nielsen [4], there is a perfect adhesion and if a fracture tends to go from particle
to particle, the proposed model is the following:

6h (1 -_•D /3) (7)

where, 6b: elongation at break of the blend and &m: elongation at break of the matrix and ad:
fraction in mass of the disperse phase.

EXPERIMENTAL

The material used in this work was polypropylene (PP) supplied by Pro-Fax (TIf: 436*K. MFI:
6.5gr/10 min, p: 0,903 gr/cm3). The fillers used were talc, phthalocyanine and sodium benzoate.
All the compounds were prepared in a co-rotating twin-screw extruder. Samples and specimens
were prepared using state-of-the-art conditions (thermal, pressure) in this field. All tests were
performed according to ASTM testing procedures. Then certain properties were simulated
using the theoretical models that predict the different properties.

RESULTS AND DISCUSSION

The addition of a load to the polymer matrix produces a series of effects, among which the
following can be mentioned: 1) the volume it occupies shows space discontinuity for the
polymer it is crystallizing. 2) The polymer-load interface is a zone of discontinuities for the
mechanical properties because of the wide properties disparity among the molecules.

A large number of properties of a loaded polymer are substantially different from the properties
of an unloaded polymer. Drastic changes have been observed in the morphological strutures of
the polymer matrix, particularly when crystallization occurs [8,91. These changes in the
polymer microstructure are expressed through differences in the mechanical properties.

65



Mechanical properties of composite materials depend not only on the properties of the matrix,
but also on the type of load, its concentration and the interfacial bond. In this research PP was
mixed with concentrations lower than 10% load, therefore the additive does not act as a load
but as a nucleating agent.

Figures 1, 2 and 3 show that Young's modulus increases as concentration of the different
nucleating agents increases. The modulus of pure PP is lower than that of the loaded PP,
because due to the fact that the load is a rigid substance, it presents a modulus higher than that
of the polymer matrix.

Most of the models used that predict Young's modulus assume that for them to be applied there
must be adhesion between load and polymer. It can be inferred from Figure 1, which represents
PP modulus with talc, that although adhesion is not perfect, theoretical equations have proven
to be effective at low concentrations (lower than 10%).

Figures 2 and 3, representing PP modulus with sodium benzoate and phthalocyanine, show that
experimental values are higher than those predicted by the different models applied.
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The polymer modulus is affected by the added nucleating agents, because at determined
concentrations they tend to form aggregates that can diminish the maximum packing volume
(load) resulting in an increase in the modulus. This increase can also be attributed to the
increase in the nucleation produced by the nucleating agent. When nucleation density increases,
higher homogeneity and cohesion between spherulites are observed, and deformation strength
of the material is therefore higher, i.e. a higher modulus. Moreover, the greater the contact
between the spherulites, the fewer the empty spaces between them, and therefore the less the
failure points. Hence, there are differences between experimental and predicted values, because
the models applied do not consider these variables which affect Young's modulus.

Figures 4 shows both experimental and theoretical results for elongation at break. It can be
observed that the experimental values corresponding to the polymer with the different loads
show values up to 70% lower in comparison to the values obtained for pure PP.

This decrease is more pronounced with experimental values than withthe theoretical ones. This
behavior of experimental values is due to the fact that the presence of the load produces
discontinuities in the stress transference, and weakening of the compound cause the fracture to
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occur at low elongation percentages. Also, this behavior affects the formation and grow of
holes.
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Figure 5 presents the experimental results and the values of the different models applied to the
breaking strength. It can be observed that experimental values are lower than those predicted by
the different models employed, for concentrations up to 7% for all the loads used.

Figure 5: Breaking strength versus different fillers
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Field stresses near the particle are independent of its size and influence breaking strength. The
polymer volume is influenced by a concentration of these stresses which increases as the size of
the particle does (formation of aggregates) and, therefore, the probability of finding a greater
imperfection inside the polymer volume is higher. According to the theory of Griffith [4], if
there are imperfections inside the stress concentration area, breaking strength decreases.

67



CONCLUSIONS

Study of mechanical properties of PP blends with different loads shows that the modulus increases
and breaking strength and elongation at break decreases as compared to pure PP.

The use of the models to analyze the different properties shows that there is not a good PP-load
adhesion, due to the presence of holes in the interface, the stresses concentration and because
the loads used are very rigid.

The applied models do not satisfactorily correlate the experimental values of the different
mechanical properties analyzed, because they do not consider a series of characteristics of the
polymers which can affect their solidification. Some of the most important are molecular
weight and polymer crystallinity.
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INTRODUCTION

In recent years, due to the necessity for environmental protection, research
has been directed towards the development of new materials. As a result,
natural fibres have been the focus of interest. They have been employed as
composite materials due to the low cost and density of the final product.
Traditionally, sisal fibres are used as reinforcement, especially in the
automotive industry.
Sisal is made up of 66-72% cellulose, 10-14% lignin, approximately 12%
hemicellulose, 0.9% pectin and 10% waterr'l .The relative quantity of
cellulose and lignin directly influences the adhesive property of the fibre.
Generally in natural fibre reinforced composite, cellulose is responsible for
the adherence to the polymer, while lignin inhibits the diffusion of the
cellulose in the matrix, making the adherence of the fibre difficult, and also
stopping the fibre from bonding extensively to the matrix. As a result of
this, alkaline treatment on the surface of the sisal fibre becomes necessary,
not only to remove grease and wax from the surface, but also to partially
remove the lignin and the hemicellulose, thereby assisting the wettability
mechanism.
The aim of this work was to study the wettability mechanism through
surface changes in sisal fibre treated with an alkaline solution. An electron
scanning microscope was utilised to calculate the angle of contact formed
between a drop of the polymeric matrix ( epoxy and polyester resins) and
sisal fibret21.
Other relevant properties will also be presented.

EXPERIMENTAL PROCEDURE

The present experiments were performed on sisal fibres which were
initially washed in distilled water for one hour at 1 001C and then immersed
in.5% NaOH for a further hour at 100°C. NaOH was chosen as it did not
influence the solubility of lignin, wax and grease.
Typical electron microscope images of epoxy and polyester drops on the
untreated monofilament sisal fibres are shown in fig.1 and fig.2. Various
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geometrical measurements were taken from these images, to determine the
contact angle, such as Ax , Bx and L. These values will be used to
determine certain parameters given in Eq. 1 and demonstrated in Table 1. A
similar procedure was used for sisal fibre treated with NaOH. Experiments
were also performed on tensile test laminate specimens produced from
these fibres using conventional hand lay up (vacuum bag technique), to
determine the mechanical properties1 31 .

Fig. 1 Photograph of epoxy resin resin drops attached to monofilament sisal
fibre (treated NaOH 0%).

Fig.2 Photograph of polyester resin drops attached to monofilament sisal

fibre (untreated NaOH 0%).

RESULTS AND DISCUSSION

Scanning Electron Microscope

Close examination of Fig.3 showing sisal fibre without any chemical
treatment demonstrates the existence of electrons that cover the surface.
These are possibly due to the formation of lignin, hemicellulose, wax and
grease. The results caused by the alkaline treatment of the sisal fibres are
shown in fig.4.
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Fig.3 Sisal fibre without any chemical treatment

Fig.4 Sisal fibre with chemical treatment (NaOH 5%)

On comparison of the micrographs of Figs. 3 and 4, the surface changes
caused by chemical treatment can be seen clearly. The surface elevation
(fig.3) diminished considerably with the 5% NaOH (fig.4), from which the
microfibres forming the sisal fibres can be seen clearly. Therefore it can be
said that 5% NaOH treatment on sisal fibre, removed the superficial layer
which covers the fibres.
Figs.5 and 6 show behaviour of a liquid drop of epoxy and polyester resin
formed in a sisal fibre filament. From Figs. 5 and 6, is clear that the contour
parameters (h, , L) can easily be measured. The parameters are used in Eq. 1
to evaluate the contact angle[21.

-3

-•7 -k I - +T 1+ )

eq. 1

On closer examination of the values given in Table 2, it becomes evident
that the length and height of drop vary inversely as the fibre is treated, see
Figs. 5 and 6.
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Fig.5 Liquid drop of epoxy resin formed in the sisal fibre treated with 5%
NaOH

Fig.6 Liquid drop of polyester resin formed in the sisal fibre treated with
5% NaOH.

The inverse proportionality, is attributed to the fibres free surface energy,
that is, as the sisal fibre was treated in alkaline solution of 5% NaOH, a
larger proportion of the active sites were created on the fibre surface.
Consequently, the surface free energy was increased, probably due to the
decrease of either the height of drop (h) or the contact angle (table 1).

Table 1. Estimated contact angle between epoxy resin and monofilament
sisal fibre (treated and untreated (0%)), polyester resin and monofilament
sisal fibre (treated and untreated).

Solution
NaOH Resin L h1 h (A, / B,) Angle

(%) mxR10-i mx10-6 mx O1 -6 MXO " 0

0 Epoxy 1830 105 690 0,592 47

5 Epoxy 1920 112 606 0,655 34

0 Polyester 1927 114 694 0,652 48

5 Polyester 1620 112 540 0,592 36
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Mechanical Tests

Close examination of values given in Figs. 7 and 8 reveals that treated sisal
fibre (5% NaOH) composites showed better tensile and flexural properties
than untreated sisal fibre ( 0% NaOH) composite. It can be concluded that
treated sisal fibre exhibits better wettability than untreated sisal fibre.
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Figure 8. Flexural Strength of Sisal Fibre Composite
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CONCLUSIONS

Analyses using an electron scanning microscope demonstrated that the
chemical treatment removed substances from the surface (lignin) of the
sisal fibre, which produced an improvement in the wettability property. The
wettability tests, using values obtained for contact angles, can be expressed
mathematically for fibres that have elliptical transverse section. These
results demonstrated that smaller angles of contact can be obtained as a
result of wettability. Consequently the rigidity and resistance of a laminated
composite made from these fibres would demonstrate improved
performance compared to composites using untreated ones.
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1-Introduction.
During the last 20-25 years KEVLAR® brand fibre, and NOMEX® brand paper have
been used for the production of numerous advanced composite parts or articles in
many sectors: aerospace, defence, but also marine, automotive, sporting goods and
other industrial applications.
This article briefly reviews key features and benefits of these two DuPont's products
and provide examples of their uses in traditional advanced composite applications.
The latest developments in terms of products (fibre and paper) are presented along
with more recent applications and emerging new end-uses.

2-The Chemistry of KEVLAR ® and NOMEX®.
KEVLAR® is a para-aramid and NOMEX® a meta-aramid. Respectively invented and
commercialised in 1965 and 1961, they are named aramids because their polymeric
structures consist of a chain in which 85 % of the amide functional groups(-NH-C=O),
are directly bonded to two aromatic benzene rings. The polymers used for the
production of these aramid fibres are obtained by a poly-condensation between
aromatic di-amines and aromatic acid chlorides. The molecular geometry of these two
raw materials, explain largely the high strength of the para-aramid fibre KEVLAR®
and the excellent thermal properties of the meta-aramid fibre NOMEX®, amongst
other valuable characteristics used in many industrial applications.

3-The production of KEVLAR® and NOMEX®.
For KEVLAR®, the solution of the para-aramid polymer in concentrated sulphuric
acid is an-isotropic and behaves like a liquid crystal. Its extrusion at high pressure
through a spinneret results in highly orientated chains. The fibre is consolidated via a
cold water quench, then washed, neutralised, and finally wound onto a bobbin.
This first step results in a high strength, low modulus fibre. The high modulus fibre
known as KEVLAR® 49 is produced in a subsequent step during which the fibre is
stretched under heat. For composite applications KEVLAR® 49 exists as yams, and
rovings of various decitex made of continuous filaments of 12 microns in diameter.

For composite materials, NOMEX® is not used as continuous fibre, but rather as
paper, which in turn is the basic ingredient for the production of honeycomb cores.
NOMEX® paper is produced from a combination of short-cut fibres and fibrils of
NOMEX® fibre. These two constituents are brought together into a fibre/film hybrid
sheet in a wet paper forming operation.

® DuPont's Registered Trademarks
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The honeycomb cores for sandwich composite structures, are made by carefully
placing parallel lines of adhesive on the flat paper sheets. The sheets are stacked
together, then pressed and cured at high temperature and the resulting block is
expanded so the adhesive-free areas open to form hexagonal cells. The expanded block
then goes through a number of dips in phenolic resin, which are followed by oven
curing cycles. These operations are continued until the honeycomb block reaches the
desired density. Then the block is cut into sheets of the required core thickness.

4-The properties of KEVLAR® and NOMEX® for composite material designs.

4.1-The properties of KEVLAR®.
Below are presented the most relevant properties of KEVLAR® as continuous fibre
reinforcement and of NOMEX® in a form of honeycomb cores for sandwich
constructions.

The most common forms of reinforcing materials made of KEVLAR® are yarns,
rovings (assembly of multiple ends of yams), fabrics and unidirectional tapes. The
yarns and rovings are used mainly for filament wound composite articles, and the
fabrics or tapes for wet-lay-up, but also for materials pre-impregnated with epoxy,
(so-called "prepregs"), for heat formed vacuum bag molding components.
In table 1 are summarised the major physical properties of KEVLAR© 49 in various
forms: fibre, resin impregnated strands, unidirectional and fabric laminates.

Hybrid composites, in which two different reinforcing fibres are "jointly" used, are
to composites what alloys are to metals. The properties of the hybrid reinforcements
and therefore those of the composite materials made from it, are a compromise
between those one gets if the reinforcing fibres were used separately, but in addition,
each separate component is able to fulfill specific functions and provides additional
benefits. For instance, when KEVLAR® and carbon fibres are used in hybrid
composites, (the ideal volume ratio being 30:70), KEVLAR® copes with the damages
created during processing (drilling and cutting) or in service (impacts), thus
compensating for the brittle nature of carbon fibre. This concept is widely used in the
aircraft industry as well as in marine and sporting goods related industries, as it enables
the design engineer to get an optimum compromise between the technical and
economical requirements.
The tensile modulus of hybrid composites follows the rule of mixture, as it is
proportional to the content of each respective fibre used as shown in figure 1.
Figure 2 illustrates the benefits of using KEVLAR® in some parts for which carbon
fibre has been selected for its high stiffness, but for which one needs to address the
possible damage due to impacts, etc.

4.2-Other specific characteristics of KEVLAR®.
Though the bare fibre is sensitive to UV light, due to its organic nature, composites
based on KEVLAR® on the other hand are not, as the fibre is protected by the resin
around it, and by many others constituents such as paints, etc. Had this phenomenon
been a real concern, KEVLAR® would not be used today in the aircraft industry for
external components.
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Tablel: Physical properties of KEVLAR® 49 - Fiber and composite materials.(1)

Reinforcement Fiber Roving Unidirectional Fabric
(2) RT 120.C

Tensile strength (MPa) 2760 3620 1380 1170 550
Tensile modulus (GPa) 120 130 80 65 30
Elongation at break (%) 2.1 2.5 -- - --

Compressive strength (MPa) -- -- 275 220 170
Compressive modulus(GPa) .. .. 80 65 30
Shear strength(MPa) .. .. 45 33 28

Fiber volume (%) .. .. 60 60 45
Density (g/cm3) 1.44 1.44 1.38 1.38 1.33

(1) for epoxy resin matrix. (2) as per ASTM D-2343 Epoxy impregnated strand.
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The same argument can be used to address concerns one may have with respect to the
moisture regain of KEVLAR®, specially when compared to other fibres such as glass
and carbon. The moisture regain of KEVLAR® 49 is around 2 to 3 %. Considering
that the equilibrium moisture level of the matrices used such as epoxy and polyester
resins are of the same magnitude, the drying of the fibre before impregnation is in most
cases neither required nor justified. Except for filament winding fabrication technique,
when an acid anhydride is used to react with the liquid epoxy resin, and for which it is
recommended to dry the fibre before impregnation, all the epoxy and polyester resins
systems do not require pre-drying of the reinforcement.
As for high modulus aramid fibre, when compared to other fibres, the larger difference
between the axial and the longitudinal thermal expansion coefficients, has led to the
formation of resin micro cracks. This may occur for example, when the composite part
is submitted to sudden and frequent changes of temperature, such as when an aircraft
reaches fairly quickly an altitude of 30,000 feet. Consequently, when designing
sandwich constructions based on honeycomb cores, one should use a sufficient number
of plies, in order to avoid the subsequent migration of water or hydraulic fluid into the
cells. This advice is equally valid for any fibre.

In the early days of composites reinforced with KEVLAR®, many have encountered
difficulties with the cutting of the dry reinforcement or the cured laminates, and with
their machining or drilling. Since that time, appropriate tools and methods have been
developed and give satisfactory results, and information available.

4.3-Properties of the honeycomb core made of NOMEX® paper.
Sandwich composite constructions consist of a low density core separated by thin and
stiff faces called skins. Under load the core is submitted to shear forces, and the skins
will carry in-plane compressive and tensile loads.
These sandwich constructions, especially when NOMEX® honeycomb core is used,
have a high strength for a minimum weight compared to other cores, a very attractive
attribute in weight-sensitive applications. Shear and compressive properties of
NOMEX® honeycomb core are presented in figures 3 and 4.
Because of its non-metallic nature, NOMEX® avoids galvanic corrosion, and provides
a good resistance to impacts compared to aluminum core. Also, due to their good
resistance to heat, sandwich panels based on NOMEX® core and skins of glass fabric
and phenolic resin, meet the stringent fire resistance, smoke and toxicity requirements
for interiors of aircraft and rail cars.

5-Recent Product Developments.
From the para-aramid polymer, DuPont produces KEVLAR® in many forms:
-high strength, low modulus (69 GPa) continuous yarns for ballistic protection, tyres,
ropes, high pressure hoses.
-high strength, high modulus (125 GPa) continuous yarns and rovings for composite
materials and for reinforcing elements of fibre optic cables.
-pulp for friction products such as brake pads, gaskets, and as staple for protective
apparel, in particular cut and heat resistant gloves.
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Figures 3 and 4: Comparison of Compression and Shear Strengths of Core materials.
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The properties of KEVLAR® can be modified by changes and/or improvements of,
1) production parameters, 2) spinning technology, 3) the structure of the polymer.
Possibilities to make such a changes are limited tough, as a new fibre will be accepted
by the aircraft industry only after expensive qualification programmes.

Recently, with a new spinning technology, the tensile strength of standard KEVLAR©
49 has been increased by 25 %. The new fibre named KEVLAR® 49 HS has been
developed primarily for filament wound composite applications, especially for the
production of light high pressure(200-300 bars) composite bottles and cylinders such
as breathing apparatus, Natural Gas Vehicles, and transport of industrial gases.

With respect to aramid paper, DuPont has developed a new paper for a high
performance core called KOREX®. This has been in response to requirements
from the industry for honeycomb core material similar to NOMEX®, but with
improved stiffness. KOREX® is a saturable aramid/phenolic core. "Saturable" means
that the web material is impregnated with the dip resin rather than just being coated
with it. The stiffness in shear and compression of KOREX® is twice that of core made
with NOMEX® and compares favorably with those of core made of bias weave of
glass fibre and phenolic resin. In addition, it has a lower equilibrium moisture content.

6-Applications of NOMEX® and KEVLAR® in composite materials.
The first adoptions of NOMEX® and KEVLAR® in advanced composites occurred
in the early 70's in the aircraft and aerospace sectors, thanks to the urgent need to save
weight for meeting performance requirements and/or for reducing fuel consumption.

NOMEX® started its career in honeycomb composite structures more than 25 years
ago, when aircraft producers decided to lower the weight of the floors, which at that
time were made of balsa core and aluminum skins. A honeycomb core was selected but
it had to be non-metallic as it was decided to use face skins made of carbon fibre.
Carbon fibre had been produced especially for the composite fan blades of the RB-211
jet engine, but replaced in the end by heavier titanium due to fatigue problems.
Since then, the low weight, good compression, shear, impact and fire properties of
NOMEX®, and the absence of galvanic corrosion, have allowed the aircraft composite
designers to use this non-metallic core for many different components(see figure 5):
-for the interiors: side wall and ceiling panels, luggage compartments, galleys, floors
for passengers and cargo areas.
-for the exteriors: flaps, fairing panels, 'rudders, elevators and radomes.
Cores made of NOMEX® paper are also used for blades, and many other parts of
helicopters, some of the parts being classified as primary structures.
NOMEX® honeycomb cores has also been adopted for interiors of high speed trains
such as the Pendolino of Fiat, ceiling panels for tramways of Bombardier, floor panels
for metro cars of BART (USA), and for the double-decker shuttle tourist cars of the
Trans-Channel trains between France and England. Competition maxi-sail boats for
events such the America's cup use core made of NOMEX® paper in the hulls. High
performance cross country skis of renowned producers like Rossignol and Atomic, are
also based on this light and high strength honeycomb core.
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In the early 80's KEVLAR® 49 was adopted for the production of many internal and
external components for new jet and propeller engines aircraft as well as for
helicopters, often in reinforcing skins for sandwich composite constructions based on
NOMEX® core. In many cases KEVLAR® was used in hybrid composite structures
with carbon fibre in order to provide the required damage tolerance, in addition to the
valuable weight saving. Today, KEVLAR® is still used in the aircraft industry, but due
to its modest compression strength, it has been excluded from primary structures such
as vertical stabilisers, elevators, rudders and other heavy-loaded components.

The high specific strength of KEVLAR® has been utilised for the production of
weight-sensitive articles such as filament wound launching tubes, rocket casings, fuel
tanks and aluminum lined composite pressure breathing bottles and cylinders.

KEVLAR® has been, and continues to be successfully used with glass fibre in hybrid
reinforcements for marine applications, in hulls and in superstructures, especially when
weight is critical as for patrol boats and for large yachts. The hybrid reinforcement
offers to the shipyard a cost effective solution to achieve increase performance (speed)
while retaining ease of lamination of the composite structures.

In sport articles such as alpine skis, tennis rackets, bicycle frames, KEVLAR® protects
carbon fibre from local damages, acts as vibration dampening element. In addition, the
name KEVLAR® is often utilized as a marketing promotional tool, a practice DuPont
has began to control, and will authorise as required to avoid miss-uses.

The most relevant example of use of KEVLAR® in sport articles, is that of canoes and
kayaks, for which the high strength and impact resistance are highly appreciated during
both leisure and competition activities, so is its light weight when it comes to carrying
the canoe or the kayak to and from the water.

7-New and future applications
NOMEX® as honeycomb core is mainly used for aircraft composite applications, and
recently adopted for fast trains where it is in competition with other cores. For marine
applications, DuPont is conducting a test programme towards the design of a cost
effective sandwich panel system to be used for cladding and partition walls in fast
passenger ferries, that can meet fire and thermal standards for fire restricting materials.
NOMEX® DECORE® consists of sandwich panels based on a honeycomb core of
NOMEX® and thin skins of ply wood. These panels are commercialised for furniture
for leisure boats, and are up to 60 % lighter than solid ply wood. A specific and easy
fabrication method has been developed to take into consideration the nature of
NOMEX® DECORE® versus ply wood.

For KEVLAR®, there are two emerging new applications, both taking advantage of
the high specific strength and impact resistance properties. These are: 1) high pressure
composite cylinders for Natural Gas Vehicles(NGV), and for storage of industrial
gases such as hydrogen, helium, and 2) reinforcement of concrete structures.
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- Composite pressure cylinders.
The existence of large reserves of natural gas, and the need to reduce pollution created
by vehicles running on diesel oil in large cities, are expected to result in increased
demand for pressure tanks. Because of the heavy weight of metallic tanks, the demand
for light composite pressure cylinders will be growing. Amongst the fibres which can
be used to produce fully wrapped aluminium or thermoplastic lined composite
cylinders, KEVLAR® 49HS will play its role due to its high specific strength and its
notorious damage tolerance. Also, the adoptions of composite pressure cylinders for
storage of industrial gases such as hydrogen, carbon monoxyde, will create additional
business opportunities.

- Reinforcement of concrete structures.
The earth quakes which have occurred in California, in Japan, and more recently in
Italy, have accelerated the adoption of composite materials both for strengthening and
repair of concrete structures.
Over the last years one has seen the use of carbon fibre in pultruded laminates, as
replacement of metal sheets in the so called plate bonding technique. This technique
has been used around the world for some time. Unfortunately, there are many
situations where this type of strengthening is not appropriate, such as adjacent to
electrical and communications facilities. For such applications steel and other
conductive reinforcement can contribute both to the risk of fire and the breakdown of
communication lines.
The adoption of KEVLAR® expands the scope of deployment for bonded
reinforcements. The ability to wrap KEVLAR® around circular columns and beams,
for example, is an extremely efficient and cost-effective means of repair and support,
which cannot so easily be achieved with metal components. Unidirectional tapes of
various widths are impregnated with cold curing epoxy resin system, and wrapped
around concrete structures requiring strengthening. The resulting laminated composite
wall provides high strength, high tensile modulus, and a good resistance to impacts and
damages.
This practical repair technique is faster than conventional repair methods, which are
often disruptive, require demolition and bring additional disposal costs.
KEVLAR® has already been successfully used in Japan for repairing office blocks,
piers of bridges, chimneys, and many other structures.

8-Requests for relevant documents on KEVLAR® and NOMEX®.
The reference list for relevant technical and commercial documents covering the uses
of KEVLAR® and NOMEX® in composite applications, is too long to be included in
this paper. Readers wishing to obtain from DuPont specific technical information on
the design, fabrication, cutting and machining of composite materials based on
KEVLAR® and NOMEX®, are encouraged to contact one of the authors of this
review at the address below:
DuPont de Nemours International SA., Advanced Fiber Systems, 2 Chemin du Pavillon
1218-Le Grand Saconnex-:Geneva- Switzerland.( or by fax :00 41 22 717 62 18).
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LAYERWISE REINFORCEMENT OF

CARBON FIBER TRIAXIAL WOVEN FABRICS

Y. Sato

Gifu Prefectural Textile Research Institute ,Kitaoyobi 47, Kasamatsu, Hasimagun,

Gifu pref, Japan-

1. INTRODUCTION

Triaxial Woven Fabric(TWF) was originally developed as base-material for space by

NASA, it have high performance with carbon fiber.

How-ever in the case of molding laminated FRP , layerwise strength depends only

on matrixes resin as well as regular fabric.

Nearly year at our research person even though laminated CFRP , are textile with a

jet stream with the upper side , throw oneself for,non-woven fabric and TWF , and

raised a strength for a layer of 70%.(1) For with this method ,it have taken time to

throw spot with wide area and were necessary treatment water after task.

Here , I develop the method to make use of easily flocky technology and report the

result.

2. EXPERIMENT

2.1 TWF weaving.

Figl Basic formations •"•-' rF zg21MC3.2C Machine-
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TWF weaving Tablel condition for a carboiifief"With a machine (Fig2)
Tablel TWF weaving condition

Machine Howa Machinery LTD made TWM32C (Fig2)
Weaving speed 30 RPM

Formation Basic ( Figl )
Filament Torayca T300-1000

2.2 Layerwise reinforcement by flocky.

As basic formation of TWF have a large hexagonal gap ,it use to layerwise
reinforcement. With a pre-experiment using a nylon pile , it can clearly throw a fiber
itself into gap by flocky. However , a fiber suitable for flocky are conditions both an

electric resistance and appropriate balance of length and thickness.
Though one doesn't become a problem case of a carbon fiber, another shows the

condition Table2.

Table2 Most suitable for flocky length and thickness(2)
Length(mm) Thickness( Denier)

-0.5 - 1.5
0.5-0.8 1.5 - 3.0
0.8-1.2 3.0 - 5.0

With this length and thickness are a ratio, because a pile not to get entangled.
In this condition, fiber length must be the worst less than 0.5 mm,in order to be
0.6d(T300) for a carbon fiber on the market. Howevera fiber like a powder can't
enough to reinforce Z-axis and we can't easily make a more thick carbon fiber.
Fig3' flow experimented as a fiber doesn't get entangled there.

Cutting of a fibe

Distribute on a board mesh-pass pile.

Flocky as adding a board for flocky chamber as.t i.
"Fik3-'FTl'ky' flow

Show the condition for a Table4
As carbon fiber is well electricity, it occurs spark by short-circuited prevented a

connection with an intermittent operation
I left the object to make flocky in the incubator to be stiff epoxy resin 150 0C 2
hours.
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Table4 Carbon pile flocky condition

Basis Sheet PTFE SHEET

Volt 30 kV

Interval distance 10 cm

Glue Epoxy resin
Paint thickness 0.7mm by bar coat

Method Up method intermittent operation ( 5-2sec on-off)
Time 180 sec

I made CFRP with a fig4 method and with a table 5 condition and molded as clipping
PTFE film for a strength test for a layer.

Table5 Condition of CFRP make
Hot-press Epoxy resin rate

Pressure 980 kPa (10 kg / cm 2 ) Main Epicote828 100
Temp 150 °C Stiffness Kayahard-MCD 80

Stiff furtherance Daito {D-acc-43 5

Glass cloth

Film with pin-hole
- ISpacer

PTFE Film

Fig4 Make CFRP ( 3)

2.4 Flocky with long carbon piles.

Spreads with respect on a board with meshed T010

With an incubator drynes

Flocky

Fig5 Long C pile flocky Flow
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If a thick object can using CFRP board,it is a shortage with 1 mm. I examined it
about the ready-made( T010-003 ) to cut T300 for 3 mm. As TWOl have moderate
moisture 5% ,the fiber stream is good, however when I make flocy as it is ,I wasn't

able to make flocy almost without very small amount flew. I thought that moisture
greatly passes and a method to remove moisture keeping a stream and make flocky.

I was able to make flocky well for this.

2.4 Reinforcement performance test
In order to confirm a CFRP of layer reinforcement strength ,I cut an piece with a
diamond cutter., And after adding an introduction crack with a knife,it was made
exfoliation test by universal tensile machine(Table5). In that case , an exfoliation

direction tried to get certain, as inventing tool to show for Fig6.

Table5 Exfoliation strength tests

Layer number 8(4+4)

Test machine Auto Graph(Shimadzu LTD)
Test pace width 25mm

Test speed 50mm/min

e vDoor's

Hinge

CFRP

Fig6 Exfoliation tool for a layer

3. RESULT

3.1 Result of testing a layerwise reinforcement

Result of testing an exfoliation strength(Fig 7)

Compare max value ,it was made improvement in strength about 2times.
Though a blank showed typical layer exfoliation phenomenon, however, one of
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reinforcement materials occurred break of base materials from introduction crack of a

knife at once

4 . . . . . . . .. . . . . . . .. . . . . . . . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . . . . .. . . . . . . . .. . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
NOL Z -Rf

CFRP sample

Fig7 Result of Exfoliation Strength..
The break part with an microscope show it for figure 8 and 9.

Fig8 Exfoliation Aspect of a Blank Fig9 Exfoliation Aspect of Reinforcement
materials

By a microscope photograph of Fig8 and 9 a blank shows a beautiful tear section as
leaving resin here and there , reinforcement materials ,the fiber remains as it is to
have thrown itself into base materials except a portion of an introduction crack of a
knife ,and it is guessed what it can reinforce steadily. I thought that an exfoliation
strength will be really more great , 2-times numerical value was teared by a bend of
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base materials.
Though a tensile test itself of a carbon pile , differ from Z-axis of a direction as
pulling , an approximately 30% strength improved. An advance of a crack is thought

to be defended, as reinforcement materials is stuffed with a fiber.

1."72 __STRESS MPal
10 0 ........... ................................ .. .................... 1• ---------------------. 1.7 1 ýý 1T A N 0

1 0 0 T -- M- STRAIN%
1.7

801 1.69

S60 1.68

6 --40 - .8.
420 .... .. ... -

NOL Z -Rf

CFRP KIND

FiglO Result of Tensile Strength.
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COMPOSITE MATERIALS FOR WEAR RESISTANCE COATINGS
USING THERMAL SPRAYING

S. Steinhdiuser 1, B. Wielage1 ,T. Schnick1, A. Ilyuschenko 2 and T.
2Azarova.

linstitute of Composite Materials, Technical University, Chemnitz, Germany
2 Powder Metallurgy Institute, Minsk, Republic of Belarus.

INTRODUCTION

The surface properties of structural units extremely influence their behaviour. In many cases
the structural units are stressed in the surface range by a combination of mechanical,
tribological, corrosive and thermal influences. The stress of materials causes a degradation of
properties or even damages. Under these circumstances the deposition with coatings especially
with composite coatings, is an effective surface protection - also applicable to composite
materials. These deposits can be coated on steel, light metals, ceramics, plastics and others. The
composite coatings consist of a matrix with, as a rule, nonmetal solid particles or - on a small
scale - short and long fibres (Figure 1). These second phases are incorporated during the growth
of the coating or later created inside the coatings (e. g. precipitation hardening). So the powders as
well as the coatings can be composite materials.
The composite coatings depending on application consist of a matrix and various dispersal phases
(see Figure 1). Material and structural interactions of different constituent phases induce modified
composite properties. The dispersal phases can change the coating structure and the coating
properties as well as the surface properties and the materials bond. Composite coatings are used
for the primary coating and for repair coating. They effect

* increase of strength and support effect (hard phases in a tough matrix)
• formation of zones sensitive to absorb or scatter energy, relax stress and divert, catch or

bridge cracks
• improvement of tribological properties (wear reduction, friction modification)
* improvement of corrosion resistance
* improvement of thermal resistance
* raising of porosity and roughness
* increase of catalyzing effects
* improvement of decorative effect
* barrier effects (e. g. thermal insulation).

The most important coating processes are the thermal spraying and the electrochemical or
chemical (currentless) plating. The thermal sprayed composite coatings will be applied at high
tribological and corrosive loads, e. g. for energy generation (e. g. gas turbines), steel manufacture
and metal forming.
The composite coatings characterise a great improvement, particularly the wear resistance at
high and complex stress. [1] - [3]
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Figure 1. Schematic depiction of a composite coating

PROBLEM STATEMENT

Up to now conventional materials for thermal spraying are based on scarce and expensive
metals (e.g. Co, Cr, Ni, W), moreover these materials are harmful to health and environment
[4]. There is a strong interest to substitute these materials by ecologically and economically
beneficial powders. The aim of the investigation is to develop composite powders for thermal
spraying with comparable tribological behaviour with respect to the ecologically and
economically basis. Steel (Fe) / Titanium-carbide (TiC) based composite powders reveals a
great opportunity for the substitution of conventional carbide powders.
Conventional powders convey Tungsten-carbide (WC) or Chromium-carbide (Cr 3 C2) and are
proved effective as wear resistance particles however TiC offer a series of advantages: higher
valence bonding resulting higher tensile strength, higher hardness (to 3.000 HV) however
higher brittleness, higher melting point. The thermal coefficient of expansion (TiC - 7,95 * 10 -
6 K) is closer to the coefficient of expansion of the steel matrix compared to WC ( 3,9 e 10 -6
K), this causes a better thermal shock behaviour. The wear resistance of TiC stoichiometric is
constant over a range from 20 - 1.200 'C. Because of high stress the addition of further
elements (e.g. Cr, Ni, Mo) to the steel matrix is necessary to obtain the needed coating
behaviour.
A new way of scientific and technical importance is to apply nanoscaled particles (second
phases) with uniform shape and diameters below 500 nm to approximately 10 nm. Such
nanoparticles are interesting dispersion hardened coatings. A further advantage is the spherical
shape of the particles, which improves the wear stress (roll-off effect). But during the thermal
spraying process there is thq. difficulty not to dissociate the small particles (not bound in the
metal matrix).
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The Self Propagating High Temperature Synthesis (SHS) is very promising as a method to
obtain very small carbide particles finely dispersed in the metal matrix. It is based on the
utilisation of the high exothermal reaction between titanium and carbon and proceeds without
additional energy from an external source. SHS enables the production of TiC near to the
stoichiometric composition intended to obtain in the Fe / TiC system [5]. The powders consist
in a plastic phase acting as a binder (e. g. iron or iron-alloy) and spherical TiC-particles which
are distributed homogeneously all over the binder phase (Figure 2). Applying different thermal
spraying methods (atmospherically plasma spraying and vacuum plasma spraying) and varying
the process parameters, dispersion hardened, wear resistant coatings could successfully be
produced.
Because of the strong exothermic reaction of Ti and C, while the steel matrix reacts inert and
reactions reflex with other components, the reactants are used completely and TiC is almost
stoichiometric. The composite powder shows a homogenous texture construction (plastic
metallic binder and uniformly distributed small TiC grains, dense and non-porous structure).
The phase boundary forms via the molten state, which leads to good embedding and wettability
of the titanium-carbides. This way a good protection against oxidation and disso- ciation during
the thermal spray process is achieved.

!|

Figure 2. Scanning electron micrograph of SHS powder - Fe / 55 wt.-% TiC ( small TiC-
particles in the Fe-matrix)

Figure 5 shows the integral microhardness of different powders and different coatings. The
coatings are sprayed with various plasma systems. The integral microhardness of the APS
produced coatings is lower compared to the VPS coatings. The lower microhardness of the APS
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coatings is caused by higher porosity and different phase condition of the binder matrix.

Further investigations are necessary for the phase identification.
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Figure 5. Integral - microhardness of different powders and plasma coatings

Comparative test results of APS and VPS coatings are presented in Figure 6, 7 and 8. The
abrasion wear resistance of the plasma sprayed coatings.shows an improvement in comparison
to carbon steel.
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Figure 6. Oscillation wear-tests
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Figure 7. Sliding wear tests (disk / bush)
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Figure 8. Comparitive Taber-Abraser tests of VPS-coatings (WC-Co-
coatings were sprayed by HYOF)

CONCLUSIONS

Investigations carried out have revealed the great potential of plasma sprayed coatings based on
the system Fe / TiC. The structure and the phase composition are dependent on the spraying
conditions. Comparative wear tests indicate out the performance of these coatings [8] - [11].
First application test with APS coatings based on the system Fe / TiC at crank shaft bearings of
diesel engines have shown an improvement of the wear resistance. Because of the first positive
results further extensive tests are scheduled.
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INTRODUCTION

Polyoxymethylene is a thermoplastic semicrystalline polymer. Such a
polymer is known to be composed of a crystalline phase embedded in an
amorphous phase. The spherulitic texture is a common morphological feature
of semicrystalline polymers. A spherulite is composed of crystalline lamellae
radiating in a twisting manner from the center of the spherulite to its
boundary, and in between lies the amorphous phase. Therefore, POM is
regarded as a being a molecular version of engineering composites [1].

The major objective of the present work is to implement the molecular
composite model for the prediction and the analysis of the thermal expansion
behavior of polyoxymethylene (POM). Therefore, isotropic and anisotropic POM
samples are prepared and characterized morphologically. Their thermal
expansion coefficients are measured and compared with the model prediction.

MOLECULAR COMPOSITE MODEL

The bulk polymer sheet is assumed to be reconstructed by stacking up
unidrectionally oriented orthotropic plies, each of which contain tape-like
lamellae, oriented in a predetermined manner. The resulting quasi isotropic
laminate analogue is simulating the behavior of the bulk isotropic sheet [2].
The model calculations proceeds through two major steps: micromechanics
and macromechanics [3]. In the micromechanics step, the true identity of the
composite is recognized. The Halpin-Tsai equation is used to predict the
unidirectionally oriented ply behavior. In the macromechanics step, the
laminate analogy is used to build up the composite laminate by stacking up
the plies in a predetermined manner. The model has been refined to account
for the complex micromorphological changes taking place during solid-state
deformation.

The accuracy, simplicity and versatility of the molecular composite model
lie in the fact that its parameters are easily accessed experimentally. These
parameters are the spherulite size, the thickness and the width of the
crystallites and the volume fraction crystallinity. Drawing, however, results in
a crystallite orientation distribution . The latter can be quantified using the
so-called orientation parameter, X, the value of which can vary from 0 for a
randomly oriented system to oo, for a perfectly aligned system [4].

EXPERIMENTAL

Isotropic and anisotropic POM samples were prepared. POM was
compression molded into sheets of 16x16x0.3 cm in an electrically heated
hydraulic press. After molding, three different cooling routes are adopted
leading to three different thermal histories: 1) Slow cooling: the mold
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assembly is allowed to cool slowly to ambient temperature; 2) Quenching: the
mold assembly is plunged into ice-cold water directly after molding and 3)
Annealing: the mold assembly is allowed to cool slowly to 100'C, then heated
to 150'C for 4 hours and cooled again to room temperature.

The isotropic squared sheets were cut into rectangular strips (15x2x0.3
cm). The strips were drawn at 150'C using an Instron tensile tester equipped
with a temperature controlled environmental chamber. The gauge length and
the cross head speed were adjusted to 3 cm and 2 cm/min respectively.
Different draw ratios are obtained by varying the drawing time. The samples
were held in the drawn state at the same drawing temperature for 15
minutes to prevent any shrinkage and to minimize any abrupt structural
changes that may arise upon releasing the sample. Samples of draw ratios
from 1 to 5 were prepared for each thermal history. After removing the
samples they are stored at room temperature for 24 hours before any further
measurement are performed.

The thermal strains were measured using an Orton Automatic Recording
Dilatometer, model EK, furnished with a chromel-alumel thermocouple for
temperature sensing. The sample length changes were transmitted through a
fused silica push rod to the plunger of a linear variable differential
transformer (LVDT). The thermal expansion coefficient "a" at any particular
temperature "T" was calculated from the slope of the resulting thermal strain-
temperature curve. The densities of the samples were obtained using
pycnometry. The degree of crystallinity was obtained using differential
scanning calorimetry. The degree of orientation was determined using wide
angle x-ray scattering. The detailed morphological features of the spherulitic
and the drawn texture were determined from scanning electron microscopy.

RESULTS AND DISCUSSION

Parametric Mapping Analysis
A parametric mapping analysis was performed to investigate the effect the
model parameters on the thermal expansion behavior of POM. Pairs of model
parameters were selectively varied, keeping the others constant. The results
were expressed as 3-D structure-property maps. Such maps have shown
potential use when designing oriented molecular composite structures [5]. A
typical map is shown in Figure 1, which depicts the variation of the
longitudinal and transverse thermal expansion coefficients (TEC) with the
orientation parameter and the temperature. The figure shows that the
alignment of the crystallites in the drawing direction is associated with a
decrease in the longitudinal TEC and a simultaneous increase in the
transverse TEC. It is also noticed that the longitudinal TEC becomes negative
when the value of the orientation parameter is greater that 8. Such a behavior
is expected because as the crystallites become oriented in the draw direction,
the contribution of the c-axis properties in this direction increases and, in the
meantime, the contribution of the properties of the a- and the b- axes in the
transverse direction increases. It is also noticed that as long as the value of
the orientation parameter is greater than 8, it does not have a significant
effect on the longitudinal TEC. On the other hand, the transverse TEC
increases slightly with orientation parameter at relatively higher
temperatures. Figure 1:also shows that the orthogonal in-plane thermal
expansion coefficients of POM are significantly sensitive to temperature
fluctuations, and particularly aci at lower values of X : i.e. at low to moderate
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draw ratios. Furthermore, a slight change in the variation of both expansion
coefficients with temperature is taking place around the glass transition
temperature (-53°C), the change being more pronounced as we approach the
isotropic state. Detailed discussion on the effect of volume fraction
crystallinity and the crystalline phase geometry are given elsewhere [6].

all

"3 ;U

(a) (b)

Figure 1 Plot of (a) the longitudinal and (b) the transverse thermal expansion coefficients
versus temperature and orientation parameter (Volume fraction crystallinity : 0.75;
longitudinal and transverse aspect ratios: 60 and 5, respectively)

Comparison between Measurement and Model Prediction
Figure 2 depicts the predicted and measured thermal expansion

coefficients dependence on temperature for isotropic annealed samples from
40 to 1400C. Obviously, the agreement between prediction and measurement
is good It is noticed, however, that as the temperature increases above 100'C
a poor agreement between the measurement and the prediction is observed.
This is expected, since the viscoelastic nature of the matrix phase is not
accounted for within the model calculations [5,6].

Figures 3 illustrates the predicted and measured thermal expansion
coefficients at 450C versus draw ratios from 1 to 5 for annealed samples. In
general the agreement between predicted and experimental values is within
16 % for both the longitudinal and the transverse thermal expansion
coefficients.

Another reason for the discrepancy between the two values (the predicted
and measured values) is that the model does not account for the void effect,
the interfacial effect and adherence between crystalline and amorphous
phases [6]
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Figure 2 Comparison between the predicted ( ) and measured (0) thermal expansion
coefficient of annealed isotropic POM samples at different temperatures.
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Figure 3 Comparison between the predicted ( ) and the measured (0) thermal expansion
coefficients of annealed POM samples, of different draw ratios, at 45'C.

For the seek of a more complete comparison, the experimentally measured
thermal expansion coefficients from other workers were also adopted. Choy et al.
[7,8] measured the thermal expansion coefficients of isotropic and anisotropic
POM at various temperatures. Figure 4 represents the comparison between the
predicted and the measured thermal exp'ision coefficients of POM as reported
in Reference 7. There is a very good agreement between both series of values
specially at low temperature, where there is a good agreement for both the
longitudinal and the transverse thermal expansion coefficients, measured at two
different temperatures. The input parameters necessary for the model prediction
were extracted from Reference 7.
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Figure 4 Comparison between the measured (0) and the predicted ( ) orthogonal thermal
expansion coefficients of POM at different draw ratios: (a) Temperature = -1 13'C and
(b) Temperature = 27'C. (Data are adopted from Reference 7)

CONCLUSIONS

The parametric mapping analysis showed, that apart from the effect of
temperature, the crystalline phase orientation distribution is a crucial parameter
affecting the behavior of anisotropic polyoxymethylene. The best achievable
thermal dimensional stability is of directional dependence: in the longitudinal
direction, it is in the vicinity of X = 8, while in the transverse direction it is in the
vicinity of X = 2 only above glass transition temperature. However, the ultimate
anisotropy in the thermal expansion behavior oriented polyoxymethylene is
attainable at an orientation parameter of 8 beyond which both thermal
expansion coefficients are almost in variant to changes in levels of orientations.

Isotropic and anisotropic POM samples were experimentally prepared and
fully characterized. The orthogonal thermal expansion coefficients of the obtained
samples were experimentally measured. A good agreement was observed when
comparing the theoretically predicted with the experimentally measured thermal
expansion behavior of polyoxymethylene sheets. Therefore, the molecular
composite model can be reliably utilized when designing with engineering, high-
performance crystalline polymers.
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Abstract: To improve the impact resistance, a novel manufacturing process was
developed to utilize microwave polymerization instead of conventional thermal method
in processing glass/epoxy composite materials. The microwave processing is volumetric,
direct, selective, and controllable. It was found that the composites cured by microwave
hold an good impact properties and it changes with the microwave radiation time and
microwave power setting. The glass transition temperature Tg and the crosslinked density
of the polymer increase with the radiation time and power setting. The tough polymer and
composite can be obtained through increasing the network homogeneity. A homogenous
crosslinked matrix of the composite was obtained by microwave, polymerization process.

INTRODUCTION

Microwave is an electromagnetic wave characterized by wavelengths ranging
between about 1 mm and 30 cm and frequency between 108 and 10 2 cycles per second
[1,2]. Microwave heating is a form of dielectric heating, which is understood as the
generation of heat in materials of either none or weak electric conductivity, mediated by
the action of a high-frequency alternating electric field. It is conditional for the
production of heat in an alternating electric field that a substance is present which
possesses an asymmetrical molecular structure, as is the case in the water molecule. The
molecules of polymers form electric dipoles which, when exposed to an electric field,
assume an orientation relative to the direction of that field. The internal heat generated by
the polar molecular oscillations will accelerate the crosslinking reactions. Under the
influence of an alternating field the polymer dipole molecules display movements of
rotational oscillation in time to the high frequency field's polarity changes. Due to the
intermolecular friction thus produced high-frequent energy becomes first absorbed and
then transformed into thermal energy [3-6].

Using microwave and epoxy resin systems, fast curing rates can be achieved. The
microwave heating is volumetric, direct, selective, and controllable. The process reduces
resin loss, improves fiber wet-out, fiber bonding with matrix, and mechanical properties
of the composites, and provides precise fiber volume control. This paper addresses the
effect of microwave curing on the impact resistance properties of glass/epoxy composite
system and the relations among the microwave radiation parameters (such as radiation
time and power setting) and network structures.
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EXPERIMENTAL

For the composite reinforcement, a 0/90 degrees continuous cross woven fiber E-
glass fabric was used. The resin system used was epoxy resin EPON®828iV-40 curing
agent, from Shell Chemical Company. The resin and curing agent were mixed according
to 3/1 weight ratio, respectively.

The work reported here is based on the results from four basic experiments: (1)
Measurements of impact properties according to microwave radiation time and power
setting. (2) Measurement of flexural strength according to the microwave radiation time
and power setting. (3) Observation of changes in Tg according to radiation time and
power setting. (4) Observation of changes in dynamic mechanical properties (tan 8 and
Log E') with the radiation time and power setting. The microwave equipment used was
Panasonic microwave oven at a frequency of 2.45 GHz. The samples were radiated at
different time spans and were cut according to ASTM D790M-84.I (Flexural three points
bending) and test instrumented impact test [7].

RESULTS

Impact resistance: Figure 1 show the impact energy absorbed up to maximum
load versus microwave radiation time at three power settings, which are obtained using
instrumented impact tester. At high power setting (800 W), the absorbed impact energy of
microwave cured glass/epoxy composite increase with radiation time, and after reaching
maximum, the values have decreasing trend. Figure 2 shows the same trend for the
impact maximum load. However, at low power settings (600 W and 400 W), the impact
resistance properties do not change much more with the radiation time.
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Figure 1. Impact energy absorbed up to maximum load at
different radiation time and power setting

102



50
. 800 W

45

40 I400 W 37.66

A 600 W 33.11 30.21

- -30--
0 25

J20 " 20.
15- Z 7.13 T6.51

10 I I I
80 100 120 140 160 180 200

Radiation time (Seconds)

Figure 2. Impact maximum load at different radialton time
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Glass transition temperature (Tg): Figure 3 shows that the Tg increases with
the microwave radiation time at higher power settings (700 W and 1000 W).
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Figure 3. Relation between Tg and radiation time

Dynamic modulus (Log E'): Figure 4 shows that at a fixed power setting (1000
W), when the radiation time increases, the curves move to high temperature regions, and
the modulus (Log E') increases. This indicates that the crosslinking density of the epoxy
system cured by microwave increases with the radiation time [8] [9].
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Dynamic loss tangent (tan 8): Figure 5 indicate that at fixed power setting (1000
W), when the radiation time increase, the curve shifts to the high temperature areas.
However, the damping peaks do not get wider. This indicates that the network of the
epoxy system cured by microwave is homogenous [8] [12] [13].
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Figure 5. relations between tan d and radiationtime at power

setting 1000 W

DISCUSSION

1. Glass transition temperature (Tg)

TMA (thermal mechanical analysis, which traces changes in polymer structure
and mechanical properties) are one of the best methods for Tg measurement and
analyzing structure and properties relations. TMA was chosen here, and the detailed
explanation is presented in the following sections. Theoretically, Tg is a physical
property only related to the sudden change of free volume of the material. Crosslinks
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reduce the available free volume, and hence Tg is expected to increase with increasing
crosslink density.

In composite applications, increased toughness and Tg are simultaneously
required. Crosslinking tends to increase a polymer's Tg, but decreases its toughness.
Ways were sought to maintain high glass transition temperature of the matrix while
keeping crosslink structure, thus increasing polymer's toughness at a given Tg [8]. In the
case of microwave cured epoxy system, Tg increases with the increasing microwave
radiation time and power setting as shown in Figure 3. The cross-linking density also
increases.

2. Crosslinking density

Crosslinking theory [9,10,11] requires a high degree of crosslinking to result in a
higher value of Log E' after the transition. In our results (Figures 4), the high Log E' was
obtained at high power setting and more radiation time. High cross-linked epoxies tend to
have high Tg but usually have less fracture toughness. For a low cross-linked thermoset
polymer, the less rigid network architecture has the ability of producing higher amounts
of plastic deformation, which may result in greater impact toughness. There is a
maximum crosslinked density at which the toughness of matrix will reach its maximum
value. In the case of microwave cured epoxy system at high power setting (Figures 1 and
2), the maximum cross-linked density was obtained with the maximum radiation time, at
which the impact maximum load and impact energy absorbed up to maximum load reach
its maximum values.

3. Dynamic mechanical properties

Variation of the dynamic storage modulus (E' or G') and the damping factor (tan
8) with temperature and frequency allow characterization of the viscoelastic properties of
a particular material. This technique detects all motional transition and usually provides
the most sensitive means of studying glass and secondary transitions, and of
quantitatively deterring the effects of phase type crosslinking reactions and morphology
properties [8].

In the case of microwave cured epoxy system (Figure 5), tan 8 shifts to high
temperatures with the radiation time increasing. The damping peaks and glass-rubber
regions do not get wider. The broadening of the glass- to- rubber transition region seen in
the property-temperature plots is often assumed to be due to a distribution in the
molecular weight between cross-links or some other kind of heterogeneity in the network
structure [12]. Mason [13] believes that the broadening is due to a broadening in the
distribution of free volume between monomeric units.

4. Crosslinking homogeneity

A tough polymer and composite can be obtained through increasing the network
homogeneity. Higher cross-linking homogeneity (in terms of less unreacted chain ends),
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which is the result of curing epoxy systems at higher conversion percentages, may be one
important factor of toughening high Tg epoxy systems [8]. Network with greater
homogeneity will have the uniform chain length between junctions. When the network
with uniform chain lengths bears the stress, it will have better performance than a less
homogeneous network. In low degree homogeneous network, the shorter chains may bear
much stress individually before failure. The deformation property of less homogeneous
network will be lower than the higher homogeneous one. The ultimate strain at failure
will decrease because of shorter segments having greater elongation at break. The loading
rates were relatively increased microscopically. The non-uniform deformation of network
chain will yield more localized stress concentrations. The macroscopic failure rate will
become faster, due to the localized stress concentration in low degree homogenous
network.

CONCLUSIONS

We have shown that for the glass/epoxy system, the impact resistance properties,
the glass transition temperature Tg and the crosslinked density of the polymer increase
with the microwave radiation time at high power settings (700 - 1000W). There is a
maximum crosslinked density at which the toughness of the matrix and composite will
reach its maximum value. Microwave cured epoxy system has a higher cross-linked
homogeneous network structure. A tough polymer and composite can be obtained
through increasing the network homogeneity.

References:
[1 ] B. Ellis, "Chemistry and Technology of Epoxy Resins, BLACXIE ACADEMIC &
PROFESSIONAL, 1993.
[2] Serway, Raymond A, "Physics For Scientist and Engineer", 2nd ed. pp785, CBS

College Publishing, 1986.
[3] Mijovic, "Review of Cure of Poly.& Comp.by Microwave",Poly.Comp.June,90,p 184
[4] Eva Marand, "Comparison of Reaction Mechanisms." Macromolecules 92,25,2242
[5] Boey, "Electro. Radiation Curing of a Epoxy/Glass.", Radiat.Phys.Chem.38,4,419,91
[6] Wei, "Comparison of Micro.& Therm. Cure." Poly.Eng.&Sci. 1993.33.pp 1132.
[7] Jang, Bor Z, "Advanced Polymer Composites", ASM International, 1994.
[8] CHARLES B. ARENDS, "POLYMER TOUGHENING", MARCEL DEKKER, INC,
1996.
[9] LAWRENCE E.NIELSEN AND ROBERT F. LANDEL, "MECHANICAL
PROPERTIES OF POLYMERS AND COMPOSITES, Marcel dekker, INC, 1994.
[10] T. MURAYAMA, "Dynamic Mechanical Analysis of Polymeric Material",
ELSEVIER SCIENTIFIC PUBLISHING COMPANY, 1978.
[11] P.J. Flory, Principles of Polymer Chemistry, Cornell U.P., Ithaca, N.Y., 1953,
Chap. 11.
[12] K. Ueberreiterand G. Kanig, J.Chem.Phys., 18, 399 (1950).
[13] P. Mason, Polymer, 5, 625 (1964).

106



BEHAVIOR OF POLYOLEFIN BLENDS IN THE PRESENCE OF
CaCO3

C. Albano', J. Gonzflez2 , M. Ichazo 2, C. Rosales2, R. Perera2, R. Navas', C. Urbinal and C.
Parra'.

'Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, Los
Chaguaramos, PO Box: 48146, Caracas 1041 A, Venezuela.2Universidad Sim6n Bolivar, Grupo de Polimeros, Departamento de Mecinica.

INTRODUCTION

Polypropylene (PP) resins have found their way to use in a wide range of applications and
technologies. Thanks to its properties, polypropylene is a good candidate for expanded use in
the plastic industry. In order to fulfill a broad range of applications, resins have to demonstrate
a wide range of properties. The long and time-consuming process of developing new resins for
each application is not profitable nor logical. The use of fillers provides us with a means of
adjusting the properties of the resins to each specific application.

Polyolefins have come to be the most used thermoplastic in the industry, representing almost
70% of the plastics used in the European Union and in Venezuela [1,2]. Polyolefin blends have
attracted a great deal of attention [3], particularly those of PP with High Density Polyethylene
(HDPE), because these plastics account for a significant percentage of waste material.

Compatibilization of two polymers (PP and recycled and non-recycled HDPE) with an EPR
block copolymer made up of propylene and 8% ethylene, which can be used both
functionalized (with 6% diethylmaleate (DEM) and 0.05% dicumile peroxide), and
non-functionalized, as well as the effect of CaCO 3 (Calcium Carbonate), both non treated and
treated with a coupling agent of the titanate type (LICA 12), were studied in this research.

Our work is aimed at optimizing certain mechanical and thermal properties and improving
interface and processing in a composite material with a recycled component, specifically
HDPE.

To improve the interaction of polymer blends, compatibilizing agents are added. Usually, these
agents are block or grafting copolymers, because they can improve interaction between two
polymers.

Incorporation of calcium carbonate, mica, barium sulfate or talc as fillers in thermoplastics is a
common practice in the plastics industry to reduce the production costs of molded products. It
is well known that mineral fillers improve the rigidity of the polymers, but they also decrease
ductility and toughness, therefore, coupling agents are included in the formulae [4,5].

Mechanical properties of PP with CaCO3 have been analyzed by different authors [4,6,7].
Maiti et al. [4] in studies on PP with modified CaCO 3 observed significant variations in
mechanical properties. One of these variations is the 25% increase of impact strength with
respect to the use of the unmodified charge. In the literature consulted, no study has been found
on the loaded PP/HDPE blend, the object of this work. The only information found for loaded
polyblends is for PP/LDPE with talc [8].
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EXPERIMENTAL

The materials used in this work were PP (p: 0.91 g/cm3 ; MFI: 7.0g/10 min; 230'C; and 2.16
load) supplied by PROPILVEN; HDPE (p: 0.96 g/cm 3; MFI: 7.3g/10 min; 190'C; and 2.16
load), supplied by RESILIN; and a recycled high density polyethylene (r-HDPE) supplied by
Plisticos M y M. The blends were prepared in 80/20 wt.%, PP/HDPE and PP/r-HDPE. An
ethylene-propylene copolymer (EPR) (8% ethylene) in 5wt.% with respect to the mixture was
used as a modifier of the blends. CaCO3 (p: 2.70 g/cm 3 , particle size x 106: 5m; specific
surface: 6.4 m2/g) was used at 20, 30 and 40 wt.% with and without lwt.% of LICA 12.

The blends were prepared in one stage in a W&P intermeshing co-rotating twin screw extruder.
In this one-stage process, all materials were mixed simultaneously. The filler was incorporated
through an additional feed port, located in a part of the extruder where complete fusion of the
homopolymers was guaranteed. Specimens were prepared by injection molding at 200'C. A
tensile test was performed using an Instron tester (model 1125) at room temperature.
Measurements were taken at a crosshead speed of 50 mrrmin according to ASTM D-638.
Impact strength measurements were made on notched samples using a fractoscope (Zwick) in
the Izod mode, according to ASTM D256-82. Differential scanning calorimetry (DSC, Perkin
Elmer) was used to observe the behavior of melting and crystallization. To erase thermal
history, the cooling and the second heating thermograms were detected with the following
scanning rate: 5°C/min in the cooling and I 0C/min in the second heating.

RESULTS AND DISCUSSION

On the basis of the research carried out by Ichazo et al. [9] on the homopolymer and copolymer
feeding and blending, and on extruder load, and on the comparison of the blends obtained in
one stage with similar blends obtained in two stages (homopolymers were mixed first and in a
second extrusion the filler was added subsequently), blending was optimized in one step and
filler homogeneity was attained. Thus, the blends used in this research were prepared in one
stage.

Table 1 shows mechanical properties of PP, PP/I-PDE, PP/HPDE/functionalized and
non-functionalized EPR, for blends with both recycled as well as non-recycled HDPE.

Table 1: Mechanical properties of PP, PP/HDPE blend, PP/HDPE/nf-EPR blend,
PPIHDPE/f-EPR blend, PP/r-IIDPE blend, PP/r-HDPE/nf-EPR blend
Polymers E (MPa) cr (MPa) Cr (%) IR (J/m) af (MPa) Ef (%)
PP 1295±35 23.2±0.7 400 26±2 40.110.4 9.2±0.3

PP/HDPE 1337±175 21.5±0.6 65±11 29±4 39.0±0.2 8.3+0.1

PP/HDPE/nf-EPR 1639±253 37.5±0.6 12±1 46±4 41.0±0.3 8.6±0.3

PP/HDPE/f-EPR 1571±139 37.6±0.7 13±1 43±4 41.1±0.3 8.8+0.4

PP/r-HDPE 1379±95 18.3±1.8 18±4 28±3 39.6±0.3 8.0±-0.2

PP/r-HDPE/nf-EPR 1380±78 35.2±1.2 15±1 36±4 40.2±0.1 8.1±0.2

The analysis of the results in Tl'able 1 determined the significance of using a PP/HDPE (80/20)
blend or a blend compatibilized with functionalized EPR (f-EPR) or non-functionalized EPR
(nf-EPR) instead of using PP alone, particularly when the aim is utilizing waste materials, such
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as recycled HDPE (r-HDPE), and using loaded materials to reduce costs without impairing
mechanical properties.

A slight increase in Young's modulus (E) for PP/recycled-HDPE and PP/non-recycled-HDPE
blends as compared to pure PP can be observed in Table 1. The other mechanical properties,
except for elongation at break (E,), show similar values within the range of experimental error.
The results showed by elongation at break are due to the poor interfacial adhesion between
these polymers because they are immiscible. This effect is more pronounced with recycled
HDPE.

When nf-EPR and f-EPR are added to the PP/non-recycled-HDPE blend, a variation in
mechanical properties is observed. In general, compatibilization of polymer blends represents a
potential increase in these properties with respect to non compatibilized blends, particularly
when there is poor interfacial adhesion between their components. In the case of Young's
modulus, increases obtained amount to 23% when nf-EPR is added and 18% for blends with
f-EPR compared to PP/HDPE blend. Also, at break point, strength (Or) increases by
approximately 80%, whereas elongation at break drastically decreases by 80-85%.

When impact strength (IR) of compatibilized PP/HDPE blends is analyzed, increases of 59%
and 48% for blends compatibilized with nf-EPR and f-EPR, respectively, are observed. At yield
point (Yield strength, rf; Yield elongation, Sf) variations between PP and PP/HDPE blend
compatibilized with nf-EPR and f-EPR were not significant.

The results lead us to conclude that adding HDPE to PP does not significantly affect
mechanical properties, except for elongation at break. When EPR is added, whether
functionalized or non functionalized, similar behavior is observed, resulting in an increase in
Young's module and in impact strength when compared to pure PP. Due to the specific use for
which this blend is intended, an increase in elongation at break is not important whereas it is in
mechanical properties such as modulus, tensile strength and impact strength.

The addition of non-functionalized or functionalized EPR to PP/non-recycled-HDPE blend
possibly decreases the size of the minority phase, which results in an increase in the tensile
strength of the composite material.

However, since no significant improvement in tensile and impact properties is observed in
materials with f-EPR as compared to those with nf-EPR, it can be inferred that functionalization
is not effective or that the functionalization percentage used is not appropriate. Therefore, the
use of nf-EPR is favorable because costs are reduced since no functionalization is needed.

When non-recycled HDPE is replaced by recycled HDPE (r-HDPE), a comparison between
PP/HDPE and PP/r-HDPE blends shows that the analyzed mechanical properties do not
significantly vary, except for elongation at break, which reaches values of 65% and 18%
respectively.

Regarding properties of the blends of PP with recycled and non-recycled HDPE with
non-functionalized EPR, a slight decrease in the modulus and impact strength is detected when
high density polyethylene is recycled. This phenomenon is due to the degradation processes
which the material undergoes. These results lead us to conclude that recycled HDPE can be
used in PP/r-HDPE/nf-EPR blend without significantly altering Young's modulus and impact
strength.
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In previous studies [9], mechanical behavior of PP/HDPE/non-functionalized EPR blend was
analyzed, loaded at different concentrations (20, 30 and 40 wt. %), to determine the proper
calcium carbonate concentration, treated or non treated with LICA 12. The results showed that
optimal load concentration is 30% by weight.

Properties of PP/HDPE and PP/HDPE/nf-EPR blends and of pure PP when 30% treated or non
treated filler is added, have to be compared to optimize mechanical properties and processing
conditions and reduce raw material and processing costs.

The results obtained from the mechanical properties are shown in Table 2. They let us infer that
adding treated filler at 30wt. % concentration to PP results in a increase of elongation at break
when compared to that of PP/untreated-CaCO 3 blend. This is due to the interactions between
the coupling agent and the polymer-filler interface, because one of its functions is to increase
interfacial bond energy of the compound formed by the polymer matrix and filler, which
inhibits the formation of micro-cracks on the surface or the material thus delaying its fracture.
This behavior was not detected either in the PP/HDPE or the PP/HDPE/nf-EPR blends or in the
blends with treated and untreated CaCO3.

An increase in the modulus of PP, PP/HDPE and PP/HDPE/nf-EPR occurred also with the
addition of treated and untreated filler. This behavior is the result of the restrictions imposed by
the polymer matrix, which do not permit molecular movements. These results coincide with
those obtained in the research by Maiti et al.[4,5], Arroyo et al.[8]; Yafit et al.[10]. With the
treated filler, no significant improvement was attained in the modulus. According to the values
reported in Table 2, filler treatment results in the PP/HDPE/nf-EPR blend with lower values for
the tensile modulus as compared to the same blends with untreated load.

Table 2: Mechanical properties of PP, PP/HDPE blends and PP/HDPE/nf-EPR with 30% filler
treated with LICA 12 (t) and untreated filler ut.)
Blend E (MPa) crf(MPa) ef (%) ar (MPa) ^(%) IR(J/m)

PP/CaCO 3 ut. 15921130 33.0+1.3 5.8±0.2 23.1±0.6 38±8 24±2

PP/CaCO3 t 1613±191 30.5±0.4 5.5±0.2 21.94-0.4 83±L7 28±1

PP/HDPE/CaCO 3 Ut 16791183 33.6±-0.3 5.7±0.2 28.3±0.1 21±2 24±2

PP/HDPE/CaCO 3 t 1541±138 31.3±0.1 5.1±0.1 26.2±0.3 24±3 24±L2

PP/HDPE/nf-EPR/CaCO 3 ut 2855±351 29.9±0.2 5.210.1 26.7±0.5 17±2 28±3

PP/iHDPE/nf-EPR/CaCO 3 t 2065±300 32.3±0.9 5.7±0.3 29.5±1.1 13±3 29±3

As to variation of strength at the yield point and at the break point (Table 2) similar behavior is
observed for PP/HDPE/nf-EPR with treated and with untreated filler, thus resulting in values
lower than those obtained with the blends without filler (Table 1). Decrease in strength is due
both to the inclusion of particles and their dispersion in the polymer matrix, which results in an
increase in the stress concentration, which brings about, in turn, a decrease in material strength.
In the case of PP/HDPE with treated filler, yield strength decreases and breaking strength
increases as compared with the untreated filler. Whereas for loaded PP, breaking strength
remains unchanged and yield strength decreases in relation to pure PP.

When untreated filler is added to the PP/HDPE/nf-EPR blend, values of elongation at break
increase by almost 40% in comparison with the value for the PP/HDPE/nf-EPR blend without
filler. This behavior is not very common for loaded compounds, because in experiments carried
out with loaded pure polymers [4,5,10], the effect of rigidization on the polymer chains
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prevents it from being deformed. This means a decrease in elongation at break, as observed in
PP and the PP/HDPE blend with treated and untreated filler. In this regard it is possible to infer
that when a rigid filler is added to a matrix formed by two polymers and a copolymer,
interactions produced are different, which could be the reason for this unusual behavior. On the
other hand, the influence of treating the filler with a coupling agent of the titanate type, LICA
12, was not as expected for PP/HDPE and PPiHDPE/nf-EPR blends, because values for
elongation at break should be higher than the values of the blends with untreated filler.

The results obtained lead us to conclude that the coupling agent does not produce the
plastifying effect which improves elongation at break. This phenomenon occurs only in the case
of PP with treated filler, because the increase in interfacial bond energy of the compound
formed by the polymer matrix and the filler inhibits the formation of micro-cracks on the
surface of the material and delays its fracture. Table 2 also shows the values for impact
strength, which decrease in blends (PP/IHIDPE and PP/HDPE/nf-EPR) with treated filler as well
as in blends with untreated filler. In the PP/CaCO3 blend, impact strength values are similar,
whether coupling agent is used or not.

These studies let us conclude that calcium carbonate can be used untreated at 30%
concentration, because the use of LICA 12 does not produce the expected effects. This could be
explained by means of the complexity of the systems studied, because many factors are in play
which cannot be easily related in multicomponent systems. There is no comprehensive study on
this kind of composite materials in the literature, except for the PP/LDPE blend with talc by
Arroyo et al. [8].

Based on the fact that this research is aimed at reutilizing waste material, in this case recycled
HDPE, an analysis of its properties is carried out to detect the possibility of its being used in
the blends under study as a replacement for PP with treated and untreated filler.

Table 3: Mechanical properties of PP, PP/r-I-DPE, PP/r-HDPE/nf-EPR with 30% filler treated
with Lica 12 (t.) and untreated load (ut.).
Blends E(MPa) Or (MPa) r (%) IR (J/m)

PP/CaCO3 t. 1592 ± 130 23.1 ± 0.6 38 ± 2 2442

PP/CaCO3 ut. 1613 ± 156 21.9 ± 0.4 83 ± 7 28 ±I

PP/r-HDPE/CaCO3 ut. 1558 ± 156 29.3 ± 0.6 15 ± 2 14 ± 3

PP/r-HDPE/nf-EPR/CaCO3 ut. 1629 ± 106 26.9 ± 0.5 24 ± 1 20 ± 1

When the PP/r-HDPE blend is compared to PP (Tables 3 and 2), both with filler, deterioration
in the impact strength and in elongation at break is observed. This phenomenon could be the
result of the poor interaction between both polymers, which further decreases with the filler.
The addition of EPR to the PP/r-HDPE blend with filler substantially improves its properties,
which can be comparable to those of PP with untreated filler and shows an impact strength
slightly lower for PP with treated filler. As far as elongation at break is concerned, its values
are quite low for blends with recycled material, because the interaction between the different
materials is not adequate.

In the analysis of the values obtained from the thermograms of the different compounds (Table
4), when CaCO3 is used with a coupling agent fusion (Tf) and crystallization (Tj) temperatures

and enthalpies (AHf, AHI) slightly decrease. This variation is not higher than three degrees
when compared to the blends with untreated load, which could be considered negligible,
therefore it is not necessary to treat the filler.
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Table 4: Thermal Properties of the blends with CaCO3 treated (t.) and untreated filler (ut.)
Blends Tf(°C) TV(°C) Alif (J/mol) A-I(J/mol)
PP/CaCO 3 t. 167 122 53 71
PP/CaCO 3 Ut. 163 120 54 68
PP/HDPE/CaCO 3 Ut. 131-164 120 75 81
PP/4DPE/CaCO3 t. 135-167 118 66 80
PP/HDPE/nf-EPR/CaCO 3ut. 132-165 121 66 77
PP/HDPE/nf-EPR/CaCO 3 t 131-163 118 66 74
PP/r-HDPE/CaCO3 Ut. 13 1-163 119 77 91
PP/rHDPE/nf-EPR/CaCO 3 Ut. 131-163 118 76 87

Thus it could be concluded that it is possible to obtain a product with characteristics similar to
loaded PP, treated and untreated, and to reduce raw material and processing costs.

CONCLUSIONS

Based on the results of this research, we can infer that the values of the mechanical and thermal
properties analyzed for PP/r-HDPE, PP/r-HDPE/EPR blends with untreated CaCO3 show that
these can replace PP loaded with calcium carbonate, untreated and treated with the coupling
agent (LICA 12). This is an optimal alternative for replacing part of the non-recycled material
with recycled material, which would result in lower raw material and finished product costs and
in a better benefit/cost relation.
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ABSTRACT

In this research the thermal behavior and the strain at rupture of a liquid epoxy resin
(diglycidil ether of bisphenol ADGEBA) crosslinked with ethylenediamine (ETDA) and
filled with metals were analysed. The thermal treatment was carried out by
thermogravimetric studies under nitrogen at high resolution (heating rate of 50*C/min) and
temperature range at 25-5000 C. Samples without and with several percents of metallic
fillers ( Cu, Zn and Al, respectively) were selected. The results from the thermal treatment
showed a high influence of filler on the thermal stability of the epoxy matrix studied. The
materials with filler presented decomposition temperature lower than those of the non-
filled material.

The experimental results from the mechanical test showed the highest strain at rupture in
absence of metallic filler for the 1:1 epoxy/amine ratio in contrast to the material with filler
where mechanical behavior depended on filler type and the content. The composite with Cu
presents strain at rupture of all.

INTRODUCTION

Polymer composite materials have been studied for many years and really constitute a
very active area for researches in materials science. Such compounds present properties that
should result by combination of the properties of its components, herald new industrial
applications, which are not contemplated from each component alone.

It is well known that the thermal and mechanical behavior of polymers are strongly
influenced by factors such as filler type, size, content and shape. Besides, such properties
have a very complex dependence on the chemical structure and the crosslink density when
thermoset resins and metallic fillers are combined.

Thermoset resins are very useful as matrix in high performance composite material. The
epoxy resins form one of the most important groups among thermosets.

The objective of this work is to continue the study of the thermal degradation for
DGEBA/ETDA systems. Previous researches about the thermal and kinetic behavior of
DGEBA/ETDA composites had been published by the authors [1-4].

EXPERIMENTAL

The manufacturation of samples have been described in detail previously [5]. Three
epoxv-amine molar ratios were used, namely. 1:1, 1:1.5 and 2:1. Composites with 10, 20

113



and 30% of various metallic fillers (Zn, Cu and Al) were employed. The metal particles
having a size no more than 250 mesh were mixed with the epoxy/amine molar ratios
mentioned.

The thermal treatment was carried out in a Dupont 1090 thermobalance, under nitrogen
atmosphere, over the temperature range 25-500'C and at constant heating rate of 500C/min.

In the mechanical test an Instron equipment was used. The samples were prepared
according to ASTM DIN 53457 standard.

RESULTS AND DISCUSSION

Figure 1 shows the thermogravimetric curves (TG) for the epoxy/amine systems non-
filled selected. Several steps were observed in the thermal decomposition of each material
studied. For instance, the 1:1 and 1:1.5 epoxy/amine ratios showed three steps, in contrast
to the 2:1 where five steps were carried out. Obviously, the crosslinking is a factor that
concern to the thermal behavior of the resin. According to literature[6] at the stoichimetric
ratio 1:1 there are a crosslink at every amine-epoxy junction in opposition to epoxy/amine
ratio of 2:1 where the structure consists of four epoxy units connected to one amine
molecule. The net result is an increasing number of crosslinked molecules. In the case of
amine groups in excess (ratio 1:1.5 ) the thermal behavior was similar at the ratio 1:1.

On the other hand, from figure 1 we can see that when the ratio 2:1 is used, over 350 0C, a
higher thermal stability is achieved, together with a high amount of residue.

10 0.......... .... ... . . . ,

80

- r i r o 1:1
---. ratio 2:1
S....... raio 1:1.5

20 2 0 ................

0 1bo 260 A 40 555
Temperature (*C0

Figure 1. TG curves for DGEBA/ETDA non- filled.
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Figure 2 shows TG curves for materials with ratio 1:1.5 and 30% of filler. In the case of
the composite with Cu four different reaction mechanisms were observed and they are
between 325-400'C or so. The presence of Zn in the DGEBA/ETDA matrix involved two
different mechanisms over the range of 325-350'C and with Al there are three from 350 to
4000C.
The weight losses observed from 25 to 1000 C were attributed to humidity adsorbed by the
porous filler, water content in the matrix and ETDA volatilization.

The influence of the metallic filler on the thermal behavior of the studied epoxy/amine
systems is evident and the complexities of the changes depend among others on
characteristic of the filler used.

10O
• ,.i.. ........ ,..... . ,,,•, •• % .

89

6 ..
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20

0 160 200 360 460 500
Temperature (*C)

Figure 2. TG curves for DGEBA/ETDA filled.

The influence of the filler concentration on strain at rupture for all samples under
investigation can be seen in figures 3, 4 and 5. In the compounds without metallic filler the
values of strain at rupture were: 6.32 Kg/mm 2 for the epoxy/amine ratio 1:1, 2.09 Kg/mm 2

for the ratio 2:1 and 1.37 Kg/mm2 for the 1:1.5.
Figure 3 shows the behavior of epoxy/amine ratio 1:1 composites, we can see in this one

that the metallic filler caused a decrease on the strain at rupture. This effect was more
pronounced for the composites with Zn and A], respectively. Besides, a reduction in thq
studied mechanical property was observed at high filler concentration for all composites.
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Figure 3.Strain at rupture Vs. % of filler.Epoxy/amine ratio 1:1.

Figure 4 presents the behavior of epoxy/amine ratio 2:1 composites. A similar behavior on
the strain at rupture, up to 10% of filler, was observed in the niaterials with Cu and Al
respectively, whereas, composite with Zn showed values of strain at rupture lower than
those materials mentioned.
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Figure 4. Strain at rupture Vs % of filler. Epoxy/amine ratio 2:1.
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Finally, figure 5 shows the mechanical behavior of the ratio 1:1.5 composites under
investigation. It becomes evident that Cu addition to the DGEBA/ETDA matrix greatly
increases the composite's strain at rupture and that with the subsequent incorporation of Cu,
up to 10%, the strain at rupture begins to fall due to poor ductility of the matrix. From this
results, it can be concluded that high strain at rupture correspond to weak filler-matrix
adhesion.

5 1
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Figure 5. Strain at rupture Vs. % of filler. Epoxy/amine ratio 1:1.5.

CONCLUSIONS

A high influence of filler on the thermal stability of the DGEBA7ETDA matrix was
observed. The materials with filler presented decomposition temperature lower than those
of the non-filled material. Besides, the crosslinking is a factor that concern to thermal
behavior of the resin.

The mechanical behavior of all composites was complex.The strain at rupture depended
among others on type and content of filler. The composite with Cu showed the highest
strain at rupture.This effect can be attributed to weak filler- matrix adhesion.
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INTRODUCTION

When particulate fillers are incorporated into a polymeric matrix, the
mechanical and thermal behavior of the obtained composite system may
critically change [1]. Work performed on such systems involved industrial
fillers such as carbon black, calcium carbonate, mica and talc [2-4]. The effect
of naturally occurring fillers such as river, mine and beach sand [5] on some
properties of filled polymeric systems was also investigated. The nature and
extent of interaction between the polymer matrix and the filler is decisive for
many of the properties and applications of these composites. Among the
naturally occurring fillers, sand is relatively cheap and is found more
abundantly than the aforementioned industrial fillers. In the present work, an
experimental investigation was designed to evaluate and to compare the
tensile performance of sand-reinforced polyethylene (SRPE) composite
samples, prepared by injection and compression molding.

EXPERIMENTAL

Low density polyethylene (LDPE) Lotrene FB 3003 (melt flow index = 0.25
- 0.23 g/ 10 min and specific gravity = 0.920) was used. Beach sand (specific
gravity = 2.7203) was used as a filler. The sand was first washed with water at
22±_10C followed by soaking in distilled water for 24 hours. The sand was then
dried at 105'C for 6 hours after decantation. The dry sand was sieved into five
different cuts: 600, 425, 250, 150 and 75 pm.

Sand was slowly added and intimately mixed with the polymer to form a
homogeneous mix. Dumb-bell shaped tensile specimens with 65 mm gauge
length, 12.6 mm width and a thickness of 3.1 mm, were prepared using
injection molding. The detailed procedure for sample preparation is explained
elsewhere [6].

SRPE composite sheets were prepared by compression molding and
rectangular plates of SRPE (170 x 70 x 5 mm) were obtained. They were then
machined using a water saw to rectangular strips (70 x 15 x 5 mm), for tensile
testing, as given in Reference 6

The SRPE composite samples were mechanically tested using a Lloyd
Instrument Materials Testing Machine, equipped with a 5 kN load cell, with a
cross-head speed of 100 mm/min, at 22±1+C. Five specimens were tested for
each reported data point. The flow and fracture behavior of the prepared
composite samples were analyzed by measuring the tensile modulus, yield
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stress, tensile strength and fracture strain obtained from the stress-strain

diagrams.

RESULTS AND DISCUSSION

Figure 1-a shows that the tensile strength for the injection molded SRPE
increases with sand content for all the examined melt temperatures. The rate
of strengthening, however, is higher for samples prepared at lower melt
temperatures. Similar effects were observed for different die temperatures, as
shown in Figure 1-b. On the other hand, for compression molded samples, the
tensile strength decreases linearly with the sand content. The sand particle
size for all the results shown in Figures 1-a,b and c is 250 gm. It is clear that
the effect of sand addition depends of the method of the sample preparation. A
strengthening effect is observed for samples prepared by injection molding,
while for compression molded samples, sand addition reduces the tensile
strength.
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Figure 1 Variation of the tensile strength wi~th the s an.d conte~nt, at a sand
particle size of 25.0. ým; (a) injection molding a~t di'fterent melttemperatures, (b) injection moldig at dlifferent die temperaturesand (c) compression molding.

The effect of sand content on the modulus of elasticity for injection moldedand compression molded samples is shown in Figure 2. For injection moldedsamples, the modulus is an increasing function of the sand content, irrespec-tive of the melt temperature. However, for compression molded samples, the
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effect of sand content on the modulus depends on the sand particle size. This
will be explained later in terms of several structurally dominating mechanisms.
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Figure 2 Effect of sand content on the tensile modulus of (a) injection molded
samples at different melt temperatures and (b) compression molded
samples with two different particle sizes

The effect of sand particle size on the tensile strength for the injection and
compression molded samples is shown in Figure 3. Figure 3-a indicates that the
tensile strength increases with sand particle size until a peak at about 350 g.m.
Further increase in particle size results in a decrease in the tensile strength.
This behavior was observed for the different melt temperatures, with the lower
temperature producing the highest strength, as to be expected [6].

Figure 3-b shows that compression molded samples, show a slight increase
in the tensile strength with sand particle size, for the 5wt% sand content only. A
higher sand content, however, tends to decrease the tensile strength.
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Figure 3 Variation of the tensile strength of SRPE with sand p article size:.(a)

injection molding at various melt temperatures, and Ib) compression
molding..

Linear relationships between the tensile modulus and the sand particle size
were observed for the injection molded samples, reinforced with 15wt% sand, at
different melt temperatures , as seen from Figure 4-a. For the compression
molded samples, reinforced with the same sand content, a non-linear behavior
is observed, (Figure 4-b ). A transition from a stiffening to a weakening effect
occurs at a sand particle size of approximately 350 gm. In other words, below
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this critical sand size, the tensile modulus increases with sand content and
above it, the modulus decreases with the sand content.
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Figure 4 Effect of sand particle size on the tensile modulus of SRPE: .(a)
injection molded at different melt temperatures; (b) compression
molded at different sand contents

The variation of the fracture strain of injection and compression molded
SRPE samples with the sand particle size, at different sand contents, is shown
in Figures 5-a and 5-b, respectively. For injection molded samples, a maximum
ductility is exhibited for a particle size of about 350 Rm. In other words, ductility
increases with sand particle size until about 350 [im, after which a drop in the
ductility is observed. Such a behavior may be attributed to the nature of
interaction between the filler and the polymer matrix,, as well as the filler's
geometry [6]. For a given sand content -per unit volume- smaller particles
provide relatively more sites for stress concentrations and possible void
initiation and fracture origins. This leads to early fracture with deformation and
consequently a decreased ductility. On the other hand, above 350 jim, the effect
of decohesion is more pronounced and dominant [6].
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Figure 5 Variation of fracture strain (ductility) with sand particle size at

different sand contents for (a) injection molded samples; (b)
compression molded samples.

For compression molded samples, the fracture strain decreases slightly with
the sand particle size, within the entire range examined, as seen in Figure 5-b ,
and does not show the initial increase observed for injection molded samples.
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The flow behavior of SRPE composites can be analyzed in terms of the
superposition of more than one stress component, in addition to the matrix
tensile strength. They are: the interfacial strength between the sand filler and
the polymer matrix, the interlocking strength resulting from the mechanical
interaction between the irregularly shaped filler and the matrix , and the
induced matrix strengthening due to relatively higher strain rates imposed on
the matrix because of the presence of the rigid sand particles [6]. At a given
sand content, the increase in sand particle size is accompanied by a reduction
in the number of sand particles. As mentioned earlier, smaller particles
provide a relatively higher available interfacial surface area per unit volume of
the composite sample, and consequently a greater chance for physical
adhesion and wetting, in spite of the possible irregularities in the shape of the
sand particles. Therefore, for a given sand particle size, at a relatively low
sand content, the chances for possible irregularities in the particle's shape are
lower when compared with higher sand content. So, at relatively low sand
content, as the particle size increases, the number of sites available for
sand/polymer adhesion is reduced. With a lower chance for the presence of
irregularly shaped particles, the effect of mechanical interlocking increases
slightly, and it overcomes the effect of internal friction and possible dewetting
(decohesion) between the sand phase and the polymer phase.

At this point it is important to emphasize that compression molding allows
the polymer melt/sand mix to solidify in a quiescent manner without any
externally imposed forces on the mix to flow in a restricted conduit, as in
injection molding. So, in injection
molding, it is important to realize
that if the sand particle size is
greater than the critical size of 350 /
[Lm, a strength reduction will be 0 InjecuionMoldng
excepted upon sand addition, as
seen in Figure 3-a. On the other Adhesion, DewetinL
hand, for compression molding with S Interlocking Interfacial friction
relatively high sand content (e.g. >
10 wt%)and/or sand particle size, r :donAre~ssion ing

the interlocking will not be very
much prevailing. Consequently, 350 Ism
above a 10 wt% sand content, the Particle Size
effect of internal friction and
decohesion, Figure 6 Dominatingphenomena for

the tensile -ehavior ofwhich are now more pronounced SRPE
and dominant, overcomes the effect of interlocking. Accordingly, the
possibility of vacuole formation and dewetting [6] is now more pronounced.
The net result is a reduction in the tensile strength of the SRPE composites,
with filler size and/or content. The diagram shown in Figure 6 summarizes
the various prevailing mechanisms affecting the strengthening of SRPE
samples prepared by either injection molding or compression molding. Such
mechanisms explain the initial increase in the ductility for injection molded
samples (see Figure 5-a), since more interlocking will promote the interfacial
strength coupled with an enhanced ductility. The interlocking phenomenon is
not significant for either injection molded samples with sand particle size
greater than 350 gm, or compression molded samples (see Figures 5-a and 5-
b). In the latter cases, dewetting coupled with less interfacial friction are the
responsible mechanisms.
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It is now pertinent to point out the incurred practical implications of using
injection and compression molding for the preparation of SRPE. Table 1 shows
the recommended methods of preparation for a given tensile behavior.

Table I Recommendations for preparing SRPE composites

Desired Property Recommended Method Condition
of Fabrication

Strength Injection molding Lower melt/die temperature
Sand particle size < 350 lim

Stiffness Injection molding Lower melt/die temperature

Compression molding Sand particle size < 350 pm
Ductility Injection molding Lower melt/die temperature

Sand particle size < 350 pm

CONCLUSIONS

A transition in the dominating mechanisms takes place at a critical sand
particle size of about 350 gm for SRPE composites prepared by either injection
or compression molding. A stiffening effect (increase in tensile modulus) is
observed for all the samples prepared by injection molding irrespective of the
sand particle size and/or content. If a strengthening effect is essential, only
injection molding, at lower melt and/or die temperatures, is to be used, and the
sand particle size should not exceed the critical size of 350 gm. On the other
hand if stiffness is desired, either injection molding at lower melt and/or die
temperatures, or compression molding with sand particle size less than the
critical 350 lim size, is to be used. Compression molding is not suitable if
ductility is desired. Furthermore, injection molding SRPI with a sand particle
size less than the critical 350 gm, at lower sand content, will produce samples of
relatively higher ductility.
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INTRODUCTION

The present engineering trend towards lean weight vehicle structures has paved the way for
the increased utilisation of polymer composite materials in the automobile industry.
Nevertheless, fibre reinforced composites (FRC) are still regarded as relatively new
materials within the mechanical engineering field and often lack the the detailed material
property data associated with metals. In particular, the use of composites in safety critical
applications, leads to uneasiness since the mechanical response in crash applications is not
well understood [1]. Many complex processes occur in crash situations. The material is
subjected to rapid accelerations and rapid straining with large pressure shocks, often
accompanied by huge temperature increases of several hundreds of degrees [2]. This
further stresses the need for a full characterisation of the behaviour of fibre reinforced
polymer composites under dynamic loading conditions and has prompted numerous
investigations in recent years [3,4,5,6,7,8,9,10]. However, when compared to metals,
relatively few studies have been conducted to investigate polymer mechanical properties
at high strain rate [2].

Nevertheless, the strain rate effects of most polymers can be described by the Eyring theory
of viscosity [11], which assumes that the deformation of a polymer involves the motion of
a chain molecule over potential energy barriers. The Eyring model [ 11], suggests that yield
stress varies linearly with the logarithm of strain rate. This is more so, since [ 12] at higher
rates, the polymer matrix has less time to localise.

In the present study, tensile tests were performed on a glass epoxy laminate at different
rates of strain to determine the effects of strain rate on the Poisson's ratio of the material.
In addition, further tests were conducted at varying fibre contents to verify the relationship
between fibre content and Poisson's ratio.

EXPERIMENTAL WORK

The apparatus and procedure used to obtain the tensile properties in the two laminates are
described below.
The tensile tests were performed according to the method prescribed in ASTM D3039 [13].
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The test specimens were cut from Tufnol grade 10G/40' glass/epoxy, 3 mm thick composite
sheets. The glass was a cross-ply plain weave [0/90] fabric. The composite had a fibre
weight fraction of 70% with 18 layers of glass. The specimens were cut 200 mm by 15
mm. Aluminium tabs 1 mm thick and 50 mm long were locally bonded on to the
specimens with an adhesive, leaving a gauge section of 100 mm. Strain gauges
(Measurement Group No. CEA-06-125UT-120) were bonded on either side of the
specimens with (Measurement Group) M Bond 200 adhesive, to measure the axial and
transverse strains on the material during testing. All data was logged on to a personal
computer via a data logger. The low speed tensile tests were performed on a M30K Lloyds
tensile testing machine at 4 cross head velocities (1.7, 8.3, 17.0, and 83.0 (x10-2) mm.s-'.
Further tests were carried out at high speeds on an Instron 1343 tensile tester at 4 cross head
velocities (10, 100, 1000, 2000 mm.s1 ).

The second material were locally manufactured random continuous glass/epoxy laminates
with different fibre volume fractions (15.5, 20.7, 26.9, 38.0 and 41.2 %). They were also
tested as with the previous material, but at a singular cross head velocity of 0.83 mm.s'.

RESULTS AND DISCUSSION

It was observed from Tables 1 and 2, and in Figure 1, that there was little variation in
Poisson's ratio with log of strain rate. That is, the ratio of transverse strain to the
corresponding axial strain below the proportional limit was not found to be rate sensitive
for the material tested. This finding for reinforced thermoset is in contradiction to the
observed behaviour of Poisson's ratio for unfilled thermoplastics which is non-linear with
strain rate and is reported to decrease [14]. The absence of rate sensitivity in the Poisson's
ratio of the composites tested as opposed to the reported rate sensitivity in thermoplastics
can be attributed to the glass content in the composite laminates and the absence of glass
or fibres in the thermoplastic as tested by Michaeli [14]. This is in agreement with the
findings of other researchers [ 15,16,17,18,19,20,21,22,23,24,25].

Lakes [ 15] explains that composite properties may be linked with constituent properties by
applying the corresponding principle of viscoelasticity to the elastic problem for the
composite. However [15], when in a fibre dominated regime (as with the present case), the
insensitivity of Poisson's ratio becomes imminent since the composite properties are much
more sensitive to fibre stiffness than matrix stiffness [16,17]. Even a pure polymer may not
change its Poisson's ratio with strain rate if it is in the glassy regime [18,19]. This is
adduced by Ferry [20]. Caddock [21], Broughton [22], and Bader [23], agree with the
findings of this work, since neither the polymer or the reinforcement would be expected to
behave as viscoelastic materials.

This is further illustrated in this work, with the aid of photomicrographs. Figure 2 shows
a magnified fracture surface of a Tufnol laminate tested in tension at a cross-head velocity

"aTuffol Birmingham, Birmingham B42 2TB, UK.
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of 1 .7x10 2 mm.s'. The surface shows individual as well as group (bundle) fibre fracture.
This may be attributed to translaminar tensile fracture [26] the fracture surface is rough
with protruding broken fibres. The fibre ends indicate a brittle failure mode. However,
there are signs of matrix adhering to the fibres which indicate a good bond in the fibre-
matrix interface. This brings about brittle failure in the fibres since interfacial bonding
influences the intralamina strength, the interlaminar shear strength and the interlaminar
tensile strength [27]. The observed pull-out of fibres is dependent on the bond strength and
the load transfer mechanism from matrix to fibre.

Figure 3 shows a magnified fracture surface of a Tufnol laminate tested in tension at a
cross-head velocity of 10 mm.s4', with fibre bunch pull-out and signs of matrix adhesion.
It was pointed out earlier that fibre-matrix adhesion brings about brittle failure. Increased
damage in the matrix brought about by a combination of the increased test speed and the
interfacial bond strength can be observed, and results in the bunch fibre pull-out shown.
This bunch fibre pull-out implies that at this loading rate, the fibre-matrix interfacial bond
strength was exceeded before the tensile failure strength of the composite was attained. It
has been demonstrated, that the tensile modulus of elasticity [28], and tensile strength [29],
of glass fibres increases with strain rate. It then follows that the observed rate dependence
of the failure strength follows from the increased strength of the glass fibres.

The works of Saka and Harding [24,25], further establish the relationship between
Poisson's ratio and strain rate, indicating a rather small change of 0.006% per decade
between quasi-static (10"3s-') and impact (1000 s-).

Furthermore, in Figure 4, it is shown that Poisson's ratio decreases marginally with an
increase in fibre volume fraction (at fibre contents Vf of 15-40%). That is, once within the
fibre dominated regime (as was observed by Lakes [ 15]), the composite properties are much
more sensitive to fibre stiffness than matrix stiffness. Thus, as fibre content increases, the
Poisson's ratio of the composite approaches that of an all glass specimen [30]. However,
the extent to which fibre content affects the rate sensitivity of Poisson's ratio is yet to be
established. Further work is needed in this area.

CONCLUSIONS

A comprehensive experimental study was conducted to ascertain the relationship between
Poisson's ratio of a glass/epoxy composite and strain rate.

The findings from the tensile tests suggest that Poisson's ratio is not sensitive to strain rate.
In addition, it was suggested that the absence of rate sensitivity in the Poisson's ratio of the
laminates tested is due to the presence of fibres in the composites. However, the extent to
which fibre content affects the rate sensitivity of Poisson's ratio is yet to be established.
The lack of adequate experimental data to support this postulation necessitates the need for
further work in this area.
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Cross-Head Elastic Modulus Tensile Poisson's Strain Rate Log of
Velocity Ex = Ey Strength Ratio ._ Strain Rate

mm.s t (xl02 ) GPa MPa U sl (* 103) s-I

1.7 26.2 299 0.15 10.6 -3.9739

8.3 26.5 325 0.15 58.6 -3.2321

17.0 26.8 304 0.15 109.0 -2.9622

83.0 27.2 342 0.15 553.0 -2.2569

Table 1 Tensile properties of Tufnol Grade 10G/40 laminates at Low Strain Rates.

Cross-Head Elastic Modulus Tensile Poisson's Strain Rate Log of
Velocity Ex = Ey Strength Ratio Strain Rate

mm.s' GPa MPa 0XV s' s

10 27.2 375 0.15 0.0363 -1.4407

100 28.0 403 0.16 0.2810 -0.5513

1000 35.6 412 0.16 1.5200 0.1829

2000 38.4 444 0.16 2.7200 0.4346

Table 2 Tensile properties of Tufnol Grade 10G/40 laminates at High Strain Rates.
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INTRODUCTION

One of the major factors affecting the mechanical properties of carbon fiber
composites is the fiber/matrix interphase. Stress transfer at the fiber/matrix interphase
requires a strong interfacial bond between the two components. However, most of the
times, an improvement of the coupling often causes a decrease in impact strength
since too strong adhesion can limit the energy absorption mechanisms, making the
composite more brittle [1, 2]. Furthermore, a characteristic of composite systems used
for structural applications is that they show poor resistance to crack propagation. By
tailoring the interphase through some kind of surface modification of the fibers,
additional mechanisms can be introduced to hinder the crack propagation resulting in
the increase of the propagation fracture energy [3-5].

Carbon fibers, are subjected to oxidative and nonoxidative treatments. Oxidative
treatment of carbon fibers [1, 6] carried out in either gas or liquid phase, is the most
commonly used modification method of fiber surface and is a standard treatment for
commercially available carbon fibers. Unfortunately the reported improvement in the
interlaminar shear strength is accompanied by a simultaneous decrease in toughness
[6]. Another standard treatment for commercially available carbon fibers is to coat the
fiber with a layer of sizing. They are supposed to enhance the wetting and
impregnation characteristics of the fiber tow and to protect the fibers from damages
during handling and processing. An increase in the interfacial shear strength of the
composite has been reported for sized fibers [2, 7] but the effect of the sizing on the
composite toughness remains unclear.

An alternative approach to the interface modification is to coat the fibers with a
compliant and ductile layer. This layer can absorb more fracture energy by promoting
localized plastic deformation around the crack tip and blunting the crack tip. It can also
act as a stress relief medium reducing the stress concentration around the fiber
caused by matrix shrinkage occurring during curing. Physical and mechanical
properties of the coating along with its glass transition temperature and its thickness
are key parameters affecting properties such as the interfacial and the transverse
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tensile strength and the fracture toughness [7]. There is a variety of coating techniques
that have been employed such as electropolymerization [8, 9], solution dip-coating [10]
or forms of interfacial polymerization starting from monomer reactants [11, 12].

In our previous work, long and short carbon fibers were coated with polyamide 6,6 by
interfacial polyamidation in a batch process, resulting in composites with improved
impact and tensile properties respectively [13, 14], while the interlaminar shear
strength remained constant. In this study, a laboratory scale unit has been developed
for the continuous coating based on the principles of interfacial polycondensation. The
in-situ interfacial polyamidation of poly(hexamethylene adipamide) on carbon fibers is
investigated as an example of interfacial polycondensation coating. Using the same
apparatus with the proper modifications the same fibers were coated with Nylon® 6,6
by solution dip-coating. The present work is focused on the characterization of the
coatings and the effect of the coatings on the adhesion and the fracture toughness of
carbon/epoxy composites.

EXPERIMENTAL

Diamine Dichloride Heat
Fiber Fiber in in Water Gun Product
Spool Spreader Water CCl4 Spool

Figure 1. Schematic diagram of the experimental coating set-up used for the interfacial
coating.

AS4 carbon fibers were continuously coated with polyamide 6,6 by interfacial
polyamidation and solution dip-coating, using a laboratory scale unit that has been
developed for this purpose. Figure 1 shows the process flow diagram for the system in
the case of interfacial coating. The apparatus includes a spreader that separates the
fiber tow apart before any coating process takes place so that the individual fibers can
be coated. The impregnation of the fibers is achieved inside two baths. The fibers are
first immersed in an aqueous solution of hexamethylenediamine and sodium
carbonate. In a following step the fibers are immersed in adipoyl dichloride dissolved in
carbon tetrachloride, where the polymerization reaction takes place. The ratio K of the
molar reactant concentrations (diamine/dichloride) was kept constant at 2.5. The
diamine concentration was chosen to be 1 % w/v. Next, the fibers are washed with
water, dried in a stream of hot air and collected on a cylindrical spool. In the case of
solution dip-coating polyamide 6,6 was dissolved in formic acid to make up a 3 %
solution. The carbon filaments were separated by the spreader, immersed in the
solution in an ultrasonic bath, and finally dried in a stream of hot air. This process
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produces unidirectional tows covered by a smooth polyamide sheath and bound
together, forming sheets that resemble thermoplastic prepregs, i.e. the polyamide
coating tends to fuse and act as a binder. Finally, the coated fibers were further dried
in a vacuum oven at 80°C for 2h.

The nature of the coatings was identified by Fourier Transform Infrared Spectroscopy
(FTIR) and Differential Scanning Calorimetry (DSC). Thermogravimetric Analysis
(TGA) was used to measure the weight of polyamide deposited on the fibers. Scanning
Electron Microscopy (SEM) revealed quite homogeneous coatings. Finally Gel
Permeation Chromatography (GPC) was used to determine the molecular weight of
the polymer coatings. Under the given processing conditions the interfacially formed
polyamide coating was proven to have lower molecular weight, compared to the
commercial NylonsTM, and its molecular weight distribution (MWD) appears to be non-
uniform as shown in Figure 2. Moreover as the diamine concentration increases the
MWD becomes broader. This behavior is attributed to the fact that interfacial
polymerization is a diffusion limited process [15, 16].

1.4 Interfacial Polyamidation Solution Dip-Coating

.1.2
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Figure 2. Molecular weight distribution of interfacially formed polyamide 6,6 in
comparison with commercial NylonTm 6,6.

Coatings of fibers have a strong influence on the fabrication processing characteristics
and the process itself. Unidirectional prepregs were manufactured using, for the
uncoated and the interfacially coated fibers, a filament winding mechanism (a
modification of the coating set-up shown in Fig. 1). However, it was impossible to use
filament winding technique, in the case of solution coated fibers, because ,of the
formation of the aforementioned polyamide sheath that bounds together the solution
coated fibers. Instead hand lay-up was employed resulting in prepregs.with lower resin
and volatile content. Solution coating makes the fibers stiffer and results in improved
handling and processing ability, allowing better control of the fabrication process. On
the contrary, interfacial coating is characterized by increased wettability and absorbs
more resin making the accurate control of the composite fabrication process more
difficult. Moreover, the use of filament winding instead of hand lay-up for the prepreg
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fabrication causes more damage (such as breaking or twisting) to the fibers due to the
high tension and friction applied on the fibers. In a following step unidirectional
composite panels were fabricated in an autoclave using 10 prepreg plies. The
epoxy/hardener system was a mixture of EPON 828/PACM-20 (100/28). After a
composite panel was fabricated, it was nondestructively inspected by the ultrasonic C-
scan method. Furthermore, the fiber volume fraction (Vf) and the microstructure of the
specimens was determined by optical microscopy.

Short beam shear tests showed that ILSS is independent of Vf for all three types of
composite tested [17]. Moreover ILSS data show that dip-coating results in composites
with improved adhesion, whereas interfacial coating results in the deterioration of the
fiber/matrix bonding (Table 1). Similar conclusions are drawn by transverse tensile
strength and strain data. The observed differences can be attributed to the introduction
of the polyamide phase with its own physicochemical and mechanical properties
between the matrix and the fibers [2, 7] and to obvious differences in the
microstructure of the composites, resulting from the different prepreg fabrication
process.

As far as the characteristics of the polyamide phase are concerned, it must be
emphasized that the molecular weight and the morphology of the interfacially formed
polyamide depend strongly on the reaction conditions [15, 16]. Moreover, even if the
optimum reaction conditions are used and a high molecular weight polymer is
produced, it is highly possible that there will still be some differences between the
interfacially formed polyamide and the commercial polyamide due to the different
morphology of these polymers. Even for polyamides of the same level of crystallinity,
the spherulite size and distribution can be dramatically different not only between the
two alternative polyamide coatings but also between interfacial coatings that are made
under different conditions [18]. These possible differences in morphology may alter the
mechanical properties of the coatings, resulting in composites with different
mechanical properties.

Table 1. Apparent interlaminar shear strength (ILSS) and Mode I fracture toughness
initiation (Gicinit) and propagation (GI cgrop) values of different types of composites.

Type of ILSS Glcinit Glcprop

composite (MPa) (kJ/m2) (kJ/m)
Uncoated 37.6 ± 0.7 0.40 ± 0.10 0.75 ± 0.12
Solution 47.8 ± 1.6 0.73 ± 0.19 1.01 ± 0.15

Interfacial 24.0 ± 1.3 0.45 ± 0.12 1.15 ± 0.19

The Mode I interlaminar fracture toughness (Gic) was also determined from Double
Cantilever Beam (DCB) test according to compliance method [5, 19] (Table 1). Gicinit of
interfacially coated fibers remains practically the same, while the increase observed in
the case of solution coated fibers may be attributed to the better bonding (expressed
by the increase of ILSS) [3-5]. In all cases, after some crack extension, a steady state
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was reached leading to a plateau, where the propagation values were determined
(Gicprop) (Table 1). Fiber bridging was much more intense in the case of interfacially
coated fibers leading to the highest Glcprop [3-5, 19].

CONCLUSIONS

A new process has been developed in which the concept of interfacial
polycondensation has been modified in order to be suitable for continuous deposition
of active polymer interlayers on the surface of reinforcing fibers. Also a laboratory
scale unit has been manufactured based on this concept. The in-situ interfacial
polyamidation of poly(hexamethylene adipamide) on carbon fibers is investigated as an
example of interfacial polycondensation coating. The same unit, with the proper
modifications, is suitable for continuous solution dip-coating. Presently, similar
amounts of homogeneous polyamide layers are deposited on the surface of carbon
fibers with both coating techniques. Under the given processing conditions the
interfacially formed polyamide coating was proven to have lower molecular weight
compared to the commercial NylonsTM. Solution coating creates a polyamide sheath
around the fiber tows and imposes the use of hand lay-up instead of filament winding
for the prepregs fabrication. Solution coated fibers are stiffer and present improved
handling and process ability.

Solution coated fibers exhibited improved transverse tensile and interlaminar shear
strength (ILSS) performance over uncoated fibers, whereas interfacial coating (within
our experimental conditions) caused deterioration in performance. These differences
are attributed to the different nature of the two polyamides and to the microstructure
differences induced because of the different manufacturing technique. Solution coating
improves significantly Glcinit because of the stronger bonding. Both polyamide coatings
exhibit increased Glcprop values compared to the uncoated samples due to fiber
bridging. However, extensive fiber bridging was observed only for the interfacially
coated samples, characterized by the highest propagation values.

As far as the interfacial coating is concerned, it must be strongly emphasized that by
no means we claim that the process employed has been optimized. In order to achieve
the "best" coating the role of all the important interfacial reaction conditions and
coating fabrications conditions must be clarified. Still, it remains unclear if a "better"
interfacial coating would lead to a different mechanical performance.

REFERENCES

1. Hull, D. "An Introduction to Composite Materials", Cambridge University Press,
USA, pp. 145- 154 (1981).
2. Hughes, J. D. H. "The carbon fibre/epoxy interface-A review." Composites Sc.
Techn., 41, pp. 13-45 (1991).

137



3. Madhukar, M. S., Drzal, L. R. "Fiber-matrix adhesion and its effect on composite
mechanical properties: IV. Mode I and mode II fracture toughness of graphite/epoxy
composites." J. Compos. Mater., 26(7), pp. 936-968 (1992).
4. Krawczak, P., Pabiot, J. "Fracture mechanics applied to glass fibre/epoxy matrix
interface characterization. "J. Compos. Mater., 29 (17), pp. 2230-2253 (1995).
5. Albertsen, H., Ivens, J., Peters, P., Wevers, M., Verpoest, I. "Interlaminar fracture
toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental
results." Composites Sci. Techn., 54, pp. 133-145 (1995).
6. Jones, C. "The chemistry of carbon fibre surfaces and its effect on interfacial
phenomena in fibre/epoxy composites."Fib. Sci. TechnoL, 42, pp. 275-298 (1991).
7. Kim, J.-K., Mai, Y.-W. "High strength, high fracture toughness fibre composites with
interface control - A review. " Composites Sc. Techn., 41, pp. 333-378 (1991).
8. Dujardin, S., Lazzaroni, L., Rigo, L., Riga, J., Verbist, J. J. "Electrochemically
polymer-coated carbon fibres: Characterisation and potential for composite
applications." J. Mater. Sci., 21, pp. 4342-4346 (1986).
9. Rhee, H. W., Bell, J. P. "Effects of reactive and non-reactive fibre coatings upon
performance of graphite/epoxy composites. " Polymer Comp., 12, pp. 213-225 (1991).
10. Gerard, J. F. "Characterization and role of an elastomeric interphase on carbon
fibers reinforcing an epoxy matrix. "Polym. Eng. Sci., 28, pp. 568-577 (1988).
11. Cranmer, J. H., Tesoro, G. C., Uhlman, D. R. "Chemical modification of carbon
fiber surface with organic polymer coating. " Ind. Eng. Chem. Prod. Res Dev, 21, pp.
185-190 (1982).
12. M. Kodama, I. Karino and J. Kobayashi, "Interaction between the reinforcement
and matrix in carbon-fibre-reinforced composite: effect of forming the thin layer of
polyimide resin on carbon fibre by in situ polymerization. " J. App/. Polym. Sci., 33, pp.
361-373 (1987).
13. Papaspyrides, C. D., Poulakis, J. G. "The effect of fiber Coating on the Tensile
Properties of lonomer-Based Composites.", Polymer International, 27, 139-145 (1992).
14. Skourlis, T., Duvis, T., Papaspyrides, C. D. "The role of a polyamide interphase on
carbon fibres reinforcing an epoxy matrix. " Composites Sci. Techn., 48, pp. 119-125
(1993).
15. Korshak, V. V., Frunze T. M. "Synthetic Hetero-chain Polyamides. " Israel Program
for Scientific Translations Ltd., Jerusalem, (1964).
16. Morgan, P. W. "Condensation polymers : By Interfacial and Solution Methods",
Interscience, New York, (1965).
17. King, T. R., Blackketter, D. M., Walrath, D. E., Adams, D. F. "Micromechanics
prediction of the shear strength of carbon fiber/epoxy matrix composites: The influence
of the matrix and interface strengths. " J. Composite Materials, 26(4), pp. 558-573
(1992).
18. Salehi-Mobarakeh, H., Ait-Kadi, A., Brisson, J. "Improvement of mechanical
properties of composites through polyamide grafting onto Kevlar fibers" Polym. Eng.
Sci.., 36(6), pp. 778-785 (1996).
19. Friedrich, K. "Application of Fracture Mechanics to Composite Materials.
Elsevier, 1989.

138



HOMOGENIZATION OF MULTILAYERED
ELASTOMER COMPOSITES

M. BRIEU1, F. DEVRIES1 and F. LUNO'

1 Laboratoire de Mod6lisation et MWcanique des Structures

U.P.M.C. / E.N.S.A.M. / E.N.S. Cachan - U.R.A. 1776 C.N.R.S.
Universit4 Paris 6 - Tour 66 - Boite 161
4 place Jussieu - 75252 Paris cedex 05

France

INTRODUCTION

Because of the wide variety of behaviors which may be exhibited by rubber mate-
rials, their use in the development of structures having to assume suspension tasks
is becoming more widespread. In order to extend the range of the use of such ma-
terials, it is now usual to dispose reinforcements inside them. The great difficulty
encountered for the computation of the resulting reducing power and mechanical
rigidity, arises from the material and geometrical nonlinearities to be accounted for,
as well as the great number of heterogenities. A way for overcoming these difficul-
ties consists of using homogenization techniques.
Because homogenization and linearization do not commute [4], when dealing with
such composites, we briefly present the homogenization technique well-suited for
such materials [4], [8]. It consists of solving two problems (one to be solved at the
composite's microscopic scale, while the second allows for the computation of the
researched homogenized behavior), coupled one another by the way of mean rela-
tions. For their solutions, incremental [4] and faster non-incremental [1], algorithms
have been developed. They both allow for the computation on the one hand of the
homogenized response of the composite, and on the other hand, of the microscopic
stress and deformations fields, which allow to analyze the local damage's sensitive-
ness.
In order to assess the relevance of the homogenization technique considered, a com-
parison of the results furnished with finite elements results (corresponding to an
heterogeneous model of the composite multilayered structure under consideration)
is presented. It shows that this method leads to a very good description of the
composite's behavior, provided the assumptions required for its use are satisfied.

PROBLEM STATEMENT

We consider a structure which occupies in its undeformed, stress-free state, a domain
Q of RW, with respect to a system of axes denoted by (0, x1 , x2, x3). This structure
is constituted by a multilayered composite, and we assume that this material allows
for a spatial and mechanical periodic distribution in such a way that it may be
constructed by a periodic repetition of a representative volume element, hereafter
called the basic cell and denoted by Y. Any point of Y is marked with respect to a
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system of axes denoted by (0, Y1 , y2, y3). Denoting the representative lengths of the
composite structure and the basic cell Y by L and H respectively, we assume that
the ratio c = H/L is very small with respect to 1 (or in other words that the basic
cell is much finer than the structure). The materials which constitute the layers of
Y are chosen as nonlinear elastic in such a way that their behavior laws depend on
a strain energy density, denoted by e.
We plan herein to compute the response of this composite structure as displacement
loadings U are prescribed to a portion of its boundary, denoted by a9p, while the
remainding part (O£o) is, for instance, clamped in a rigid, fixed body. Denoting
respectively by III, U• and F', the first Piola-Kirchhoff stress tensor, displacement
field and deformation gradient tensor, and by 1 the dyadic tensor, the heterogeneous
problem to be solved writes:

divII' = 0 in Q
O•e(x, F') in

Fc = I + V, U in 0l

U, = U on OQ1

U1 = 0 on aQo

where div• and V., stand for the divergence and gradient operators with respect to
the macroscopic space variables (X1, x 2, x3).
As already pointed out the main difficulty encountered for the solution of this
problem arises from the great number of heterogenities. The way we choose for
overcoming this difficulty consists of using a homogenization technique, well-suited
for accounting for the nonlinearities of this problem.

HOMOGENIZATION OF NONLINEAR ELASTIC COMPOSITES

As e converges to zero, or in other words, as the number of heterogeneities becomes
infinite, it may be shown [8], that the solution fields to problem (1) converge to
H-I, U and F, solution to the following coupled macroscopic-microscopic problems,
when no instabilities (such as microbucklings) occur at the composite's microscale
[6]:

divH = 0 in Q div.y" = 0 in Y
OE(x, F) in Oe(y, f)in Y

OF Of
F=1+VU in Q f=F+Vu inY (2)
U = U on ai 1  u Y - periodic
U = 0 on aro 7(n) Y - antiperiodic

where the macroscopic strain-energy density E(x, F) is implicitly defined by the
mean relations (3) and n, div., V•T respectively stand for the unit external normal
to aY and the divergence and gradient operators with respect to the microscopic
space variables (YI, y2, y3).:

{ =< 7 >Y (<g>y = J (Y)dY; fYI =-g(y)dy) (3)=< f >y FYIy(1
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For the solution of these problems, incremental [4] and faster non-incremental [1],
algorithms may be used.

ANALYSIS OF RELEVANCE OF THE HOMOGENIZATION TECH-
NIQUE

In order to assess the relevance of the homogenization technique, presented above,
we compare in the sequel the results it furnishes to these obtained thanks to a finite
element solution of problem(1) in the case of a multilayered composite structure.
In order to limitate the numerical costs induced by the solution of problem (1) we
consider that the loadings prescribed to the laminate induce plane strains. The finite
element formulation that we have introduced, consists of using Ruas-like triangles
[9] with 7 nodes by element. For the numerical solution of problem (1) we used a
mixed formulation [7] leading to a lagrangian formulation, which associated problem
has been solved thanks to an Uzawa-like algorithm.
The laminate we have chosen for this comparison is assumed to admit a basic cell
made up of two isotropic different materials, which strain energy densities are given
by [2] (il, i2, i3 stand for the three principal invariants of the dilatation tensor C=ft

El E2 E3 El + 2E2 + E3 L~3 4
e(il, i2 , i3) = - 3) +£( - 3) + £-(i3 - 1) -3 1 2 L() (4)

where the behavior coefficients of the layers have been chosen as follows (E, v
respectively stand for the Young's modulus and Poisson's ratio):

Layer 1 : (E = 1 GPa, v = 0.3)
El = 0.116 GPa, E2 = 0.268 GPa, E 3 = 20 MPa (5)
Layer 2: (E = 1 Pa, v = 0.45)
El = 0.193 MPa, E2= 0.152 MPa, E3= 1.4 MPa

Let us lastly precise that the volume fraction of layer 1 has been chosen equal to
20%. The finite element meshes we have used, have been constructed starting from
a regular mesh of a period consisting of 310 Ruas-triangles and 1003 nodes.

CASE OF UNIAXIAL TENSION PARALLEL TO THE STACKING
AXIS

Thanks to the symmetry of the problem to be solved in the case studied here, only
a quarter of the entire laminate has been considered for the FEM solution. Figures
1 and 2 present the nominal homogenized and heterogenous stress induced at the
boundary of the structure where a uniaxial tension displacement is prescribed, for
different numbers of periods producing the laminate. One may first observe that
the homogenized results do not agree with the heterogeneous ones when the number
of periods is not sufficiently high. Next, it may be observed that far enough from
the edges of the laminates, the homogenized and heterogeneous results agree very
well, which proves the relevance of the homogenization technique proposed. The
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discrepancy found near the edges of the laminate stems from the fact that the
homogenization process conducts to stresses which satisfy the boundary conditions
only through their mean values. The homogenization process leads so to edges
effects which may be corrected.

CASE OF SIMPLE SHEAR PERPENDICULAR TO THE STACKING
AXIS

Another comparison between numerical and homogenized results have been carried
out in the case of a simple shear loading, macroscopically prescribed to the consid-
ered laminate. The results presented in figure 3 concern the nominal stress induced
at the upper boundary of the structure, where a shear displacement is prescribed.
These results show first that the numerical solution obtained, leads to a stress vec-
tor which is fluctuating at this boundary. The reason of this phenomenon stems
from the fact that the mesh considered is insufficiently fine because of the great
deformation of the elastomer layers. Unfortunately no finer mesh may be consid-
ered because of the computers limitations. However the trends exhibited in the
case of uniaxial traction are recovered. One may thus observe that homogenized
and numerical-heterogeneous results well agree, except in the neighborhood of the
laminate's free boundaries, where homogenized stresses do not satisfy the prescribed
conditions of the heterogeneous problem.

CONCLUSIONS

The numerical-heterogeneous results from which the relevance of the homogeniza-
tion technique, briefly presented in this paper, may be asserted, point out the
limitations of the validity domain and accuracy of this technique. However, the
homogenized results well agree with the numerical-heterogeneous ones, at least in
the range of validity of the homogenization process.
Its use for the design of nonlinear elastic composite materials would allow to sig-
nificantly reduce the CPU times required for the simulations. Moreover, as well as
in the case of linear elastic behaviors [3], it allows to accurately compute the forces
induced at the composite's heterogeneities level, which constitutes a powerful tool,
when dealing, in a further step, with the study of damage in such composites.
On the other hand, this homogenization technique and its best solution's algorithm
[1] require to solve, at each iteration and at both the microscopic and macroscopic
scales, linear, yet highly-heterogeneous problems. Its application to realistic indus-
trial cases (structures and loadings) will take benefit from the recent developments
made inside the framework of parallelism applied to composite materials [5].
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Figure 1: Homogenized and heterogeneous stretch/stress curves (Uniaxial tension
parallel to the stacking axis (4 periods)).
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Laminate with 14 periods
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Figure 2: Homogenized and heterogeneous stretch/stress curves (Uniaxial tension
parallel to the stacking axis (14 periods)).
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Figure 3: Homogenized and heterogeneous stretch/stress curves (Simple shear per-
pendicular to the stacking axis).

144
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INTRODUCTION

The problems on the near-surface buckling of composite materials in zones of com-
pression are of great importance in modern technics since the buckling-like phe-
nomena in compressed zones of products fabricated from composites can reduce
significantly their load-carrying capacity. Such factors as the interaction between
fibres and the effects of free boundaries are sufficiently characteristic of unidi-
rectional composites, outer layers (faces) of composites and structure elements
containing long fibre- like reinforcement. It should be noted that various sim-
plified approaches, especially those based on smearing the internal structure of
the composite (the model of a continual medium), do not always apply to the
study of the problems mentionned above. Rigorously speaking, to obtain suffi-
ciently satisfactory results on these problems, one should involve the appropriate
three-dimensional equations of stability to describe the behaviour of each of the
constituents of the internal structure and satisfy exactly all the boundary condi-
tions resulting from such a problem statement. The purpose of the present paper
is the study of the near-surface buckling of composite materials in zones of com-
pression through employing such a rigorous solution technique based on the model
of a piecewise-uniform medium.

PROBLEM STATEMENT

To model the near-surface behaviour of a fibre-reinforced composite material sub-
jected to a compressive action of forces let us consider an infinite periodic series
of fibres of a circular cross-section located in the vicinity of the free boundary of
the composite. The axes of the fibres are parallel and located in a plane parallel to
the free plane surface. We note that the results obtained within the framework of
such a statement can be considered as upper bounds for the loads responsible for
the near-surface instabilities in fibrous composites of regular structure.

In the study, Lagrangian coordinate systems (x, y, z) and (rq, 0q, zq) coinciding in
the undeformed state with rectangular and cylindrical coordinate systems, respec-
tively, are associated with the matrix and each of the fibres. Relations between the
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coordinate systems introduced have the form

x = qD-rqsinOq, y= H-rqcosOq Z=Zq (1)

rpexpip=p-qDexpipq + rqexp ioq, (p q, p, q = 0, ±1, ±2, ±3,...)

Here D is the distance between the axes of the neighbouring fibres, H is the distance
between the axes of the fibres and the free surface, q takes all integer values from
-0o to +oo. The binder occupies the region y > 0, rq > R, and the fibres are
located in the regions rq • R where R is cross-sectional radius of each of the
fibres. It is assumed that: the shortenings of the fibres and of the matrix along the
fibres are equal; a continuous contact between the fibres and the matrix is realized,
and the surface of the binder is not loaded. We describe the subcritical states in
the matrix and in the fibres by the relations

7*0m =ý0 *Oa *0a : *0m

%z $ 0, =A 0, -% $ (2)
01 Y I rzz ,q O')z 0, 9 'z

.*om =O, ~.*om = O, .*o = O, .o•=0

We note that up to the stage of numerical solution, we perform all the transforma-
tions for the general case of transversally isotropic compressible materials of the
fibres and the matrix without employment of concrete material models.

We apply the general solutions of the three-dimensional linearized problems at
homogeneous subcritical states [11 to each component of the composite and arrive to
the following mathematical formulation of the problem: it is necessary to determine
the minimal value of the loading parameter with which the equations

(12 02 ,2 a2 2 02
(A2 +o = 0, (A1 + (2 0, (3)

for the fibres and similar equations for the matrix have nontrivial solutions satisfy-
ing the continuity conditions for the forces and displacements at the interfaces in
the form

p*aq = p*m 5 = (4)

the conditions of zero forces at the free plane surface

*m = 0 (y = 0) (5)

and the attenuation conditions for the displacements at y -+ oc. The components
of the vectors jaq, d at the lateral cylindrical surfaces are determined by the
formulas (superscripts "m" and "aq" have been omitted)

10 02 0 102u• = - x, U6 ¢X
U4rq60q Orq 0'O r

UO _q ýqq q'

q
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SOLUTIONS OF THE PROBLEM

Usually, for elastic materials, (2 0 (32, (22 :4 (2 and they are positive real
numbers. In view of this, we search solutions of the equations for the matrix,
satisfying the attenuation conditions at y -- oo, in the form

00 00 00

n = 7 sin -yz 3 {3 A fK2 ((•>rp) sin nOp + E C(47fK 2 ((Cyrp) cosnOp+
p=-oo n=1 n--

00 r+oo

E A"i,] Lii,7 (t) exp(-(0 cosh(t)-,y) sin[(, sinh(t)-,(x - pD)]dt+
22=1 O0

3 oo +00> A•] Llk2 (t) exp(- n2 +-2sinh 2 tyy) sin[( sinh(t)-y(x - pD)]dt+

k=2 n=0 -O

(7)
00 f+0

>3 C�,�'2n 100 M 11,n(t) exp(-(' cosh(t)-yy) cos[Cl sinh(t)y(x - pD)]dt+
72=0

3 0 f+0/3 >3 C• ]_ Mlk(t) exp(- 02 + 0k2 sinh 2 tyy) cos[(t sinh(t)7(x =-pD)]dt}

k=2 n=0 -c

We utilize the same principle while constructing xm . In the solutions thus con-
structed we have unknown coefficients A7, C',mp j=1 2,3; n = 0, 1,2,...,
p = 0, ±1, ±2, ±3, ... ) as well as unknown functions Lijn(t), Mij,2(t) to be deter-
mined from the conditions (5) at the free plane surface. y = 7r1-1, where 1 is
the length of the halfwave of a stability loss mode. Solution for the fibre No.q is
searched in the form

00 00

= (sin -yz{ 7r)sin nOp + E C cos lnOp} (8)
n=1 n=0

(Xap is represented analogously). In the solutions for the fibres A". C", (j
1, 2, 3; n = 0, 1, 2, 3, ... ; q = 0, ±41, ±2, ±3, ... ) are unknown coefficients.

We represent solutions for the matrix in the rectangular coordinate system (x, y, z)
in the form of improper integrals and introduce them into (5). As a result, after
transformations, we obtain a system of equations permitting explicit determination
of the unknown functions. When these functions are determined, the solutions con-
structed satisfy exactly the initial equations, the attenuation conditions at y -+ c
and the conditions at the free plane surface. We note that these solutions de-
scribe all possible stability loss forms. By assigning specific relations between the
unknown constants for the fibres and the matrix, one can obtain arbitrary com-
binations of forms of fibre stability loss. It follows, however, from the physical
considerations that the most interesting are stability loss modes satisfying condi-
tions of periodicity along the series of fibres when all fibres lose their stability by

147



the same mode. Therefore we continue our consideration on the example of stabil-
ity loss forms possessing the mentioned above property of periodicity. By virtue of
the periodicity conditions accepted, we put

mp a mam = "ApJ aAm, =--- Am~i Cm, = Cm•j An~ - A,,,C,= Cn,

Possible stability loss modes with a period equal to the period of the structure
include- 1st - stability loss form for which the fibres axes remain in the planes
perpendicular to the free plane surface of the binder and 2nd - stability loss form
for which the fibre axes go out of these planes. All stability loss modes are studied
in a similar manner. Henceforth we expose briefly the further solution techniques
on the example of the stability loss mode, for which all the fibres become unstable
in the phase and their axes remain in the planes perpendicular to the free surface
of the binder. For the indicated stability loss form, by virtue of the periodicity
conditions, it is sufficient to satisfy boundary conditions at the walls of one of the
fibres, say with q = 0. Substituting solutions for the matrix represented in the
coordinate system (ro, O0, zo) together with the solutions for the fibre No.0 into (4),
after a change of variables, we obtain an infinite homogeneous system of algebraic
equations

00
Bm Xm + a a •
ak k +BkXka + E QaknXnT = 0, (9)

n=O

We derive a characteristic equation by means of equating to zero the determinant
of the derived infinite system:

A' ) 0 (10)

NUMERICAL INVESTIGATION

In the study we prove that the characteristic equations obtained can be resolved
numerically using the truncation of the infinite determinants. For the calculations,
it is necessary to specify the concrete model for the materials of the fibres and
the matrix. We consider below the case of compressible isotropic linearly elastic
materials of the fibres and the matrix and employ the second variant of the theory
of small precritical deformations. Thus, we have

Om 0m. 0a 0e . 0m OM (11)
rZZ -ZnZ. o, ozz = -Eagzz, Ezz Ezz

Characteristic equations were solved'on computer with the fixed values of the stiff-
ness and geometrical parameters of the problem by means of the reduction method.

We obtained dependences e.1 _= &.l()(tc = _yR) and 02 = _e'2 () and determined the
critical values of e by means of comparing results for each of the stability loss forms
considered.
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As an illustration of the
numerical results obtained, 0.1

we present in Figure 1 the Ecr
dependences of the critical 0.08
values of e with the rigid-
ity ratio EaE,'. Curve 2

1 has been calculated with 0.06
HR-' = 1.5 and DR- =
2.5; curve 2 - with 0.04
HR-i I--+ oo;DR-1 I- oo
(limiting case corresponding
to a single fibre located far 0.02 1

from the boundary). Anal-
ysis of the results obtained 100 200 300 400 500
affords a possibility of for-
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conclusions:

For certain combinations of the problem parameters the free matrix boundary
exercises a substantial effect on the stability of a series of fibres. Usually, this
takes place when the fibre series approaches the free matrix boundary. The critical
stability loss mode of fibres near the free boundary of a binder can differ from
the critical stability loss mode for the same series of fibres located far from the
boundary. Another factor, influencing significantly the critical stability loss form
and the value of the critical load, is the mutual interaction of the fibres during
stability loss. The mentioned two factors, coupled together, can reduce the critical
load by several times (Fig. 1). Thus, the internal structure of fibre-reinforced
composite materials can essentially influence their compressive strength and it is
often necessary to simultaneously account for the effects of the matrix boundary
and the mutual effects of the fibres.
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INTRODUCTION

The method of suspension drying is used in modem ceramic composite technology in
order to obtain materials with high strength, purity and homogeneity of phases [1-3].
Solid particles are crushed preliminary till nanometric size and then mixed with liquid.
Initial concentration of solid particles usually account for 6-8 % in volume. The liquid
phase should be able to prevent adhesion of the solid particles which can be associated
with explosion due to Rebinder's effect. During drying of this mixture, called "sol", the
solid skeleton is formed already when the solid phase concentration reaches 17% [4].
The following evaporation of liquid is connected with filtration through the porous
skeleton to free surface. The wet gel being obtained by such a way is a porous
viscoelastic body which contains few physically and chemically incoherent liquid. The
final stage of the process consists of material aging and, sometimes, firing. Obviously
the all stages of the process are associated with significant shrinkage of the material
which leads to origination of cracks and can decrease the strength of the material being
manufactured. One of the main problems in modeling of the process described above is
change of mechanical properties of the material during manufacturing.

PROBLEM STATEMENT AND MODEL DESCRIPTION

The mechanical properties of compounds are defined mainly by their microstructure. The
drying body is a good illustration to the above. We can observe the microstructure
formation and mechanical properties evolution during such a process simultaneously.
The relation between the volume concentration of the solid particles and liquid in unit
volume varies during the process of drying. In Fig. 1 the real structure of the drying body
and proposed computational model are presented. The situation is complicated by the
fact that there is some kind of phase transition during process: in the first stage the
material consists of the unconnected solid particles distributed in the liquid and exhibits
the effective liquid-like behaviour. After the percolation limit is reached the average
distance between the particles becomes comparatively small and the van der Waals'
forces combine them in a network-like structure. From this moment the body exhibits the
solid-like effective properties.
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Figure 1. Modelling of the microstructure formation in the drying ceramic:
a) SEM-micrograph of sol-gel derived KTiOPO 4 thin film [5]
b) Model for calculation of the average properties

According to this model of the process the following plan of the calculation of effective
properties of drying bodies is proposed. Both solid and liquid materials are assumed to
be viscoelastic having different properties. The infinite viscosity and infinite shear
modulus give us limit cases of pure elastic solid and pure viscous liquid. The following
assumptions are used in the subsequent analysis: the relaxation time is small comparing
to the time of concentration variation, the dimensions of the body are always larger
comparing to the mean particle diameter, and the concentration of the solid phase during
the process is a known function of the time and the space coordinates (complete solution
of this problem is discussed by Pompe et al. [6]. Macroscopic mechanical behaviour is
defined as an average strain response of such a specimen to the boundary loading which
would lead to uniform or polynomial states of stress in homogeneous medium. We
describe here a wetted powder compact as a two-phase composite consisting of solid
particles inside the viscoelastic gel in the first stage and liquid inclusions inside the solid
network in the second stage (after the network formation).

EFFECTIVE FIELD METHOD OF AVERAGING

Firstly, let us consider an infinite linear-viscoelastic medium which satisfies the following
constitutive law

t

0

where cy and , are the stress and strain tensors, respectively and Cm is the forth rank
tensor depended on time (function of relaxation). Let then a close compact region V of
the medium be occupied by material which possesses different properties than those,

described by the kernel Cojkl. Using the Laplace's transformation which defined for an

arbitrary function f(t) as
co

J(s) = f (t)e-tdt (2)

0
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equation (1) can be rewritten in the follows form
-ij(s) = Ci7kl(S)AN(S) (3)

Hereafter, for simplicity, symbols which denote the Laplace-modes of the functions will
be used without overline. Let us start with the equilibrium equation in displacement for
the medium with a single inclusion in the Laplace-space

V.(C(x,s) :Vu(x,s)) = 0, (4)
where colon denotes for the contraction of the tensors by two indices and u is
displacement vector. Rewriting the tensor C(x,s) in the form

C(xs)= C(s)(+C(s)V(x); ) = C '(s)-Cm(s), (5)
where V(x) is the characteristic function of the domain V, the determination of field
u(x, s) can be reduced to the corresponding integral equation:

u(x,s)= u(x,s)± +VG(x- x',s) :SC(s) :e(x',s)dx', (6)
V

where G is the Laplace's transformation of the Green's tensor for viscoelastic media. For
x E V equation (6) defines the strain field s(x, s) =(Vu(x, s) + u(x, s)V)/2 inside the
inclusion. Using this tensor the mechanical fields outside V can be determined relatively

easy. If V has an ellipsoidal shape and ,0 does not depend on the coordinates, then the
field , is uniform inside V as well [7]. And for the deformation field in the inclusion one
can get

6(x,s) = (I+ P(s) 5C(s))': 8(x,s) A(s) : 0(x,s) (7)

where I = (yi) = l(68ik J1 + 8 0 jk) and P is integral over V for the second derivative of:

the Green's tensor.

Pik,(Xs) = J S V. (8)
v Oxx^ ()(k)

Next, let us consider an infinite viscoelastic body containing a spatial homogeneous
random set of ellipsoidal inclusions, which occupy a system of compact regions
{Vk}with characteristic functions Vk(x). The equation for Laplace mode of the strain
field can be written as

8(x,s) = S°(x,s) + f P(x - x',s) 8C(x',s) " (x',S)Vk(x')dx' (9)

kVk

To solve the homogenization problem and develop the macroscopic equation of
equilibrium with help of (9), let us use the variant of the self consistent scheme [8],
according to which
- every inclusion is considered as isolated one, 'sealed' into the homogeneous medium
with the properties of the matrix;
- the presence of surrounding inclusions is taken into account by the introducing of
effective strain field acting on the examined one.
- this strain field is uniform one.
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RESULTS AND DISCUSSION

Let us consider the drying body as a two-phases viscoelastic medium, while both the
phases are isotropic and one of them is a set of spheres (inclusions) distributed in other
(matrix). In this case the Laplace mode of the relaxation kernel can be written as follows

C KEk, + 2W(s)Ekl (10)

where p=i for the inclusions and p=m for the matrix, )t and K are Laplace's images of
the shear and bulk moduli of material, El and E2 are elements of the forth rank tensor
basis [8]:

E' =5 1 E 2EEk iik 1 =5 j~k, E =I~jkt -- 3 'jkl (1

Since all inclusions have spherical shape of the same radius, tensor P(s) in (7) has the
following form 1 .E _____

Pijkl(s)- E' + 1 E 2  (12)

where

K,(s) +45(3K. + 4-t.m(s))K.(s)=Km 4-0.(, I-t,(S) = ýtn(S) 6Kn2~()

If we assume that the inclusions have the isotropic distribution, then the macroscopic
behavior of the body is isotropic and may be described by two functions:

K*(s) = Km + (6 + K()~(3
. . (13:) .

= * ( S ( = )± C {6(S ) + Ci )J
where 6-t and 8K denote the differences between corresponding moduli of matrix and
inclusions. Now the inverse Laplace's transformation should be made in (13). In order to
obtain corresponding relations in the general case the numerical methods are more
preferable since the final expressions are quite cumbersome.

To compare our approach with the real behavior of drying bodies, we use experimental
data from [3,9] obtained for the acid catalyzed gel made by hydrolyzing distilled
tetraethylorthosilicate (TEOS) with shear modulus g,, = 1.6 GPa and Poisson's ratio
v = 0.2. The liquid is H20 / C2H5OH / HCl = 16 / 4 / 0.01, that is pure viscous mixture

with viscosity rl, = 0.82. 10-3Pa• s and bulk modulus K, = 0.226 GPa. It means that the
solid phase of considered body is pure elastic and the liquid is viscous (without elastic
part).

The effective properties of the body strongly depend on the distance from the surface of
evaporation. However, the transversal shear modulus can be considered as a function of
solid phase concentration only. Corresponding data are presented in Figure 2 for
effective Young modulus and shear modulus of the material. Initial concentration of the
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solid phase is 0.06. The dotted curves correspond to a model for which the solid particles
are distributed in the liquid. It is in a good agreement with experimental data unless 65%
of liquid was evaporated and solid phase concentration reaches 17% (the concentration
is assumed to get changed only due to the liquid evaporation). It is significant that the
point of the model change corresponds to the solid phase concentration of 0.14. This
point is in a good agreement with percolation limit discussed above.

Sl I Liquid inclusions in
1000 -Percolation limit [solid matrix

S100
SSolid particles

distributed in liquid

A. A Young modulus

10 19.-•o• , 1o * Shearmodulus

*If'

0.05 0.1 0.2 0.3 0.4 0.5
Concentration of solid phase

Figure 2. Comparison of the obtained results with experimental data.

In the case of cylindrical shape of the drying body the radial dependency of material
parameters using the solution of the filtration problem can be used. Examples of such
curves are shown in Figure 3. The radial dependency of solid phase concentration in
arbitrary moment of the time (after the percolation limit is reached) is inserted . This
solution is discussed in [5] and used here to obtain the radial dependency of effective
momentary shear modulus ýt and effective viscosity *1.

Viscosity (mPa s) Shear modulus (MPa)
0.405 - --- - " ~500

0.400 2
10.5040

0.395 - Solid phase

-concentration •" 300

0.390 00
0.25• • •200

0.385 -
1 .

100
0.380

0.0 0.25 0.5 0.75 1.0
Relative radius

Figure 3. Evolution of mechanical properties of drying cylinder:
1 - effective shear modulus; 2 - effective viscosity
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CONCLUSIONS

In the present study the drying derived material is designed as two-component composite
with the variable volume concentration of the phases. The proposed approach allows to
describe the drying materials when a large dissimilarity in mechanical properties of the
solid particles and the humectant media takes place. The model is quite simple and at the
same time reasonably accurate for the use in technological applications since the results
obtained are in good agreement with experimental data available in the literature.
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INTRODUCTION

The mechanical behavior of monolithic ceramics can be improved by incorporating
reinforcements into ceramic matrices known as ceramic matrix composites. Ceramic
composites offer greater advantage than monolithic ceramics for heat exchanger applications
based upon higher temperature capability, higher toughness, lower density, and better corrosion
resistance in a hostile environment [1-5]. Recently, multilayered composite (hybrid laminate)
have been developed through the transformation process of the material microstructure [6] or
through tailoring the thermoelastic properties of ceramic materials [7-8]. Designs based on
classical laminate plate theory have been utilized recently to fabricate multilayered ceramic
matrix composite plates by estimating the residual thermal stresses. This design method can be
extended to design and fabricate composite tubes.

Estimation of the thermal residual stresses of laminated polymer-based composite tubes were
based on the assumption that these tubes are long enough to consider the application of
classical laminate plate theory (CLPT) within the gage length section [9-10]. This section is
approximated to be within a distance of twice the radius of the tube from the edges for various
loading conditions. In addition, trial and error procedures were routinely used in finalizing the
design of ceramic composites based on the induced thermal residual stresses during cooling
from processing temperature to room temperature. As yet, a design methodology has not been
developed to optimize the parameters that influence the thermal residual stress profiles.
Simultaneously, the effective thermal conductivity through the tube wall thickness is
maximized. Layer thicknesses, tk, volume fraction of the reinforcement, Vf, and stacking
sequence are considered as design variables. In this paper, a design methodology based on
sensitivity analysis to optimize the architecture of a laminated ceramic composite tube is
developed.

DESIGN APPROACH

Structural components of monolithic ceramics under high temperature applications often
exhibit catastrophic failure as a result of high thermal stresses. Such failure could be prevented
by introducing favorable residual stresses in such components. This strengthening mechanism
can be achieved by the incorporation of various types of reinforcements (particulates, platelets,
whiskers) with ceramic matrix material, microstructural modification, and by the fabrication of
laminated composites. The latter method can be achieved by tailoring the composite structure
containing various laminae with different volume fractions. The design procedure of laminated
composite tubes using CLPT starts with the elastic modulus of the fibers and matrix, Ef and Em,

157



respectively, the volume fraction of the fiber Vf, the fiber aspect ratio li/d, and the coefficients
of thermal expansion for fiber and matrix, af and Urm followed by the use of the rule of mixture
to determine the lamina elastic properties in the longitudinal and transverse directions. In
addition, the design procedure involves the alteration of various laminae possessing different
thermoelastic properties in the composite structure to induce favorable thermal residual
stresses. Since tubular structures generate high hoop thermal stresses in the outer surface
which may cause premature failure during fabrication, attention is focused on the minimization
of the induced thermal residual tensile hoop stress as well as the maximization of the effective
thermal conductivity, keff, through the tube wall thickness. Estimation of the induced thermal
residual stresses is performed by means of a general purpose finite element program. The
composite architecture considered in this study contains up to five layers consisting of 0, 10%,
20%, 30%, and 40% volume fractions of SiCw/mullite.

FINITE ELEMENT MODELING

A two-dimensional axisymmetric element is used to model the composite laminate and the
graphite mandrel as shown in Figure 1. This model initially represents both the graphite
material at the inner section and the composite laminate, with altered volume fractions, at the
outer section. Because of symmetry, only one half of the length is considered. It is assumed
that each lamina with a prescribed volume fraction is transversely isotropic and that perfect
bonding exists between the individual layers (no slippage). The Cartesian coordinates (r, z)
represent the radial and axial coordinates for a tubular configuration, respectively. The
graphite mandrel has an inner radius of 15.875 mm and the composite laminate is 3.175 mm
thick. A two-dimensional interface element is employed at the graphite mandrel and the
composite laminate interface to study the possibility of force transmission between both
components. This element type allows both surfaces to maintain or break physical contact and
also permits relative motion between both surfaces.

z cm Interface elements

laminate

4 Graphite 01 1-

38.1 mm
t I I III

_H [1111t]

15.875 mm

19.05 mm ~

Figure 1I Axisymmetric FE Model of Graphite/Laminate Composite Tube.
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The boundary conditions requires a zero displacement in the direction normal to the plane of
symmetry for all the nodes lying on that plane. All the nodes lying on the r axis of symmetry
have zero displacement in the z direction. A preliminary study revealed that there is no contact
between the graphite and the laminate for different friction coefficient values (j.f = 0.01-0.05)
during the mesh refinement procedure for a temperature change of 1700 "C. This is mainly
attributed to the thermal differential existing between the graphite and the composite laminate:
the effective thermal expansion of the laminate is much lower than that of the graphite which
causes it to shrink more, thus, creating a gap between both components. Therefore, the finite
element analysis was proceeded for the composite tube only.

OPTIMIZATION PROCEDURE

In this analysis, the maximum nodal tensile hoop stress, ap,, and the effective thermal
conductivity, keff, represent the cost and constraint functions, respectively. The laminae
thicknesses, ti, and the stacking sequence of the volume fractions, Vf, are taken as the design
variables. First-order Taylor series expansion of the cost function about ti and Vf takes the
following form

aR .f )=YR (T ,VO)+VIR? 00 ,VO)(V-4 ,V -Vo)

where a R (Yo V,) is the current value of the cost function. The constraint function is
represented by the effective thermal conductivity, keff = ko, where ko is obtained by substituting
the initial design variable values in the following equation:

1 1 t- t
Res= -k (2)

k• t,=k tkt

where kdf, t, ti, and ki are the effective thermal conductivity through the tube wall thickness,
the laminate thickness, lamina thickness, and the thermal conductivity of the individual lamina,
respectively. The values of the thermal conductivity for the individual lamina were measured
experimentally and presented in Table 1 [8]. Table 1 also includes the elastic properties of the
different laminae used to design a hybrid composite tube with optimal characteristics.

Table 1 - Material Properties of Various SiCw Reinforced Mullite

Laminae With Different Volume Fractions, Vf.

Vf (%) EL(10' psi) ET (10 Psi) cL (10t"°C) aT (10"7fC) v k (W/m.K)
0 32.66 32.66 5.2 5.2 0.22 5.20
10 37.44 36.57 4.9 4.9 0.22 6.93
20 41.21 40.05 4.8 4.8 0.21 9.10
30 45.0 43.54 4.76 4.8 0.21 11.88
40 51.67 49.92 4.7 4.76 0.21 15.60

The optimization design procedure is stated as follows:

min. max. value of a R (7) (linearized)
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keff 1ko

Subject to 0.0762 _ti <3.175mm
05 tVf • 0.50 (3)

ly-ti =0.125

An independent variable defined by
nl -1

t"l =t- Iti
i =1

where t is the overall fixed thickness, gives the thickness of the remaining layer. The index n
represents the number of laminae included in the laminated composite tube of wall thickness t.
Each design variable is varied quantitatively by 10% to linearly approximate the cost function
in the neighborhood of the initial values. Several computer runs using ANSYS are performed
to evaluate the first derivative of the cost function with respect to each design variable, ti and
Vi at the current point. The material properties of the individual lamina used in the finite
element model are listed in Table 1. Various designs consisting of combinations of at least two
laminae with volume fractions ranging between 0 to 40% reinforcements are tested. It was
found that two designs among others represent the best candidates for achieving favorable
residual stresses. The first design consists of five laminae of [40/30/20/10/0] taken as design
#1 and the second design (design #2) has four laminae of [40/30/20/10] volume fractions of
SiC whiskers reinforced mullite. Since the tubes are intended for applications in aggressive
chemical environments and because mullite exhibits better corrosion resistance than SiCw, a
corrosion resistant layer made of pure mullite or reinforced mullite at a low volume fraction of
SiC, at the outside surface is needed. Therefore, the outside layer must contain the lowest
volume fraction such as pure matrix material and 10% for designs #1 and 2, respectively.

The values of the maximum hoop stress is obtained by performing several computer runs using
ANSYS. Those values were then substituted into equation (1) to obtain an approximate first
order explicit relationship for the hoop stress as a function of the design variables. An IMSL
optimization subroutine is then used to minimize the approximated cost function; therefore,
obtaining a better design. New design variable values are then obtained and implemented into
the finite element model to estimate new values for the residual thermal stresses. Variation of
each new design variable by 10% is repeated to linearly approximate the cost function which in
turn is implemented into the linear optimization program. In this step, the effective thermal
conductivity was increased by 10 to 20% and new values of ti are obtained. This procedure is
repeated several times until there is no change in the new values of the design variables which
will be taken as the proper design values.

Stacking sequence is another design variable that was considered in the analysis. Combinations
of altered volume fractions were performed to select the optimum stacking sequence which
results in the lowest value of the tensile hoop stress. Optimum layer thicknesses were then
obtained using the same procedure described above. The optimum stacking sequence, effective
thermal conductivity, and layer thicknesses for designs # I and #2 are listed in Table 2. Table 2
presents the initial and final designs and the corresponding tensile hoop stresses at the outer
layers. A reduction of 10% and approximately five times less in value of the residual tensile
hoop stresses from the initial guesses at the outer layers were obtained for designs #1 and #2,
respectively.
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Table 2 - Initial and Optimum Laminated Composite Tube Architecture.

Laminate DesignT Sequence (in) Hoop Stress (Ksi) % Reduction Conductivity

Initial t40 = 0.04, t30 = 0.03
[40/30/20/10/0] t2o = 0.025, t 0 = 0.015 41.522 -------

Design #1 t, = 0.015

Final t40 = 0.006, t30 = 0.006
[30/20/40/10/0] t2 0 = 0.006, t 0 = 0.10 37.42 10 9.7

_ _ = 0.007
Initial t30 = 0.03, t40 = 0.01 ------

Design #2 [40/30/20/10] t,0 = 0.04, tt0 = 0.045 10.766
Final %0 = 0.006, t4o = 0.006 2.142 500 7.5

__ [30/40/20/10] t20 = 0.013, t10 = 0.10

A preliminary comparison between design #1 and #2 reveals that design #2 is less corrosion
resistant than design #1 because of the 10% lamina as compared to pure mullite being at the
outer surface. This is due to the existence of SiC whiskers in the 10% volume fraction which is
less corrosion resistant than mullite. However, design #2 possess much lower tensile hoop
stress in the outer lamina than that for design #1. This large reduction of the tensile hoop stress
enhances the strength and the thermal degradation of the composite architecture made from
design #2. Even though design #1 has better performance in severe chemical environment, its
high induced thermal residual stresses may cause macrocracking of the outer lamina during
cooling from the processing temperature. Figure 2 shows the initial and final residual hoop
stress distribution through the tube thickness according to design #2. This improved composite
architecture will eliminate the formation of microcracking as well as enhance the
thermnomechanical performance of the tube under severe loading conditions. Therefore, it is
desirable to proceed with the fabrication of laminated composite tubes as outlined in design #2
for applications in less hostile chemical environments and severe thermal shock conditions.

15 '[-w lnitial 
,

S5 •Fial

S-5
S-10

15

-20

-25 -
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Figure 2 - Residual Hoop Stress of Laminated Composite Tube for Design #2.
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CONCLUSIONS

The laminate plate theory was successfully used to predict the thermal residual stresses in
laminated composite tubes. A finite element model of SiCw/mullite laminated composite tubes
was used in conjunction with a linear optimization program. An optimum tube design
consisting of [30/40/20/10] stacking sequence was obtained. A reduction 51% of the thermal
residual tensile stress for the selected design was achieved. It is concluded that design #2 is
more favorable to utilize than design #1 for severe thermal loading conditions. It is worth to
note that this methodology can be applicable to multilayered composites where the winding
angle is of particular interest.

REFERENCES

[1] Liu H., et al, "Crack Deflection Process for Hot-Pressed Whisker-Reinforced Ceramic
Composites," J. Am. Ceram. Soc., 72 [4] 559-563, (1988).

[2] Homeny J., Vaughn W. L., and Ferber M. K., "Processing and Mechanical Properties
of Sic-Whisker-A120 3-Matrix," Am. Ceram. Soc. Bull., 66 [2] 333-338, (1987).

[3] Hillig W. B., "Tailoring Multiphase and Composite Ceramics," Materials Science Research
(Tressler, R. E., Messing, G. L, Pantano, G. C., eds), Vol. 20, pp 697-711, Plenum Press,
New York, (1986).

[4] Ruh R., Majdiyasni K. S., and Mendiratta M. G., "Mechanical and Microstructural
Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC
-Whisker Composites," J. Am. Ceram. Soc., 71 [6] 503-12, (1988):

[5] Wei G. C., and Becher P. F., "Development of SiC Whisker Reinforced Ceramics," Am.
Ceram. Soc. Bull., 66 [2] 347-52, (1987).

[6] Huang J. L., and Cutler R. A., "Strengthening of Oxide Ceramics by Transformation
-Induced Stresses," J. Am. Ceram. Soc., 70 [3] 164-70, (1987).

[7] Boch P., Chartier T., and Huttepain, "Tape Casting of A120 3/ZrO2 Laminated Composites,"
J. Am. Ceram. Soc., 69 [8] C191-C192, (1986).

[8] Kim T., "Fabrication and Design of Processing Silicon Carbide Whisker Reinforced
Mullite Composites," Ph.D Thesis, The Pennsylvania State University, May (1990).

[9] Rizzo R. R., and Vicario A. A., "A Finite Element Analysis of Laminated Anisotropic
Tubes," (Part I - A Characterization of the Off-Axis tensile Specimen), J. Comp. Mater.,
Vol.4, pp. 344-359, July (1970).

[10] Pagano N. J., "Geometric Design of Composite Cylindrical Characterization Specimen,"
J. Comp. Mater., Vol. 4, pp. 360-379, July (1970).

162



STRENGTH AND STIFFNESS OF BRAIDED FIBER

COMPOSITES

STEPHEN R. SWANSON

Dept of Mechanical Engineering, 50 S. Central Campus Dr., Rm 2202 MEB
University of Utah, Salt Lake City, UT 84112-9208 USA

ABSTRACT

Advanced composite materials are being used in the form of textile preforms, with
the typical advantage being lowered manufacturing costs. This paper summarizes some
current work on predicting the stiffness properties of these materials, and also gives recent
results on measured strength properties. The data show significant loss of strength in 2-D
triaxial braid materials relative to tape laminates, which is believed to be due to the
undulation of the fibers. Results of a model to help explain this strength loss associated
with fiber undulation are presented.

INTRODUCTION

With the goal of reducing manufacturing costs, advanced fiber composites are being
used or considered in the form of textile preforms in conjunction with resin transfer
molding (RTM). The development of braiding as a technique for advanced fiber composite
structures has been described in recent work [1,2]. Processing parameters have been
considered by Popper [31 and Ko, Pastore, and Head [4]. The development of stiffness
models for textile materials including braids has been considered by a number of authors,
including [5-9]. Comparison of these models with experimental results for braids has been
given in [10]. Information on the strength properties of textiles has been presented by
Ishikawa and Chou [11], Ko [12], and by Crane and Camponeschi [13].

The present paper summarizes work on predicting stiffness of triaxial braids,
reviews recent work on the strength properties, and presents new work on models for
predicting the effects of fiber undulation characteristic of braids on the strength properties.

STIFFNESS OF 2-D TRIAXIAL BRAID COMPOSITES

Predictions of stiffness of 2-D triaxial braid materials have been based on the idea
of a unit cell, that is representative of the fiber architecture. A schematic of the basic
architecture of the 2-D triaxial braid is shown in Fig 1. A useful model for predicting
stiffness has been termed the fiber inclination model. This model assumes the braid fiber
path as a series of in-plane and through-the-thickness segments, and combines these
segment properties to predict average braid stiffness as shown by Smith and Swanson
[10,14].

As described in [14], the stiffness of the braid yarns can be described by a
transformation T2 through the crimp angle to the in-plane direction, and an in-plane
transformation T3 through the braid angle to the overall global coordinates. The three-
dimensional braid material stiffness matrix is then given by

QxYZ= TT-'[Q,23 T2T3  (1)
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In this model the path of the braid yam within the unit cell is idealized as a series of
straight segments. Following what has been entitled a "mechanics of materials" approach
to stiffness, it was shown in [14] that both the E11 and E22 properties could be obtained
by summations over the segments of the form

1 = If (2)

E, E
The results of computations of this kind are shown compared with measured stiffness
properties in Fig 2.

Axial

50

SA B C D

Hoop ArIchitectr

Fig 1. Illustration of 2-D triaxial braid Fig 2. Comparison of models with
architecture, experiment for hoop modulus of 2-D triaxial

braid materials, from [14].

STRENGTH PROPERTIES OF 2-D TRIAXIAL BRAIDS

Experimental tests to determine the biaxial strength properties of 2-D triaxial braids
have been carried out using tubular specimens, loaded by combinations of internal and
external pressure, and axial tension and compression [15]. A typical failure envelope is
shown in Fig 3. Also shown in this figure is a failure locus based on a maximum average
in-plane strain in either the axial or braid direction fibers. This critical strain criterion has
been shown in previous work to correlate ultimate failure in fiber dominated laminates and
loadings [16]. As shown here, the application to braided materials seems to be useful as
well. It should be noted that the strains used here are the in-plane, average, components,
and thus differ from the actual strain, particularly in the braid fibers. The failed specimens
exhibited a failure mode that could be readily identified as failure of either the axial fibers or
the braid fibers, depending on the ratio of the applied stresses. Some specimens exhibited
failure in both modes. These specimens had applied stresses that corresponded very
closely to the "corner" of the failure locus where a change in failure mode is predicted.

164



A notable feature of the results is that a significant loss of strength occurs relative to
pre-preg laminates made from the same or similar materials [17], in some cases on the
order of 50%. This reduction in strength represents a reduction in ultimate strain
capability, combined with the reduction in stiffness relative to the tape laminate. Clearly
one of the factors in the loss of strength in the braid fibers is the stress concentration
associated with the undulating path of the braid fibers. An additional mechanism was noted
by Smith and Swanson [18], due to the variation of properties because of the discrete
nature of the large yarn fiber bundles in braided materials. The region between the axial
yarns has different transverse stiffness properties than the region where the braid yams go
over and under the axial yarns, because of the different Poisson ratio values for these
regions. These variations of transverse strain were noted in Moire fringe surface strain
measurements reported by Naik, Ifju, and Masters [19]. Thus the change of properties in
the transverse direction gives a variation of the strain distribution, and thus a strain
concentration in the braid fibers relative to the average strain.

Some limited work has been done to correlate the fiber undulation with strength
properties and strength degradation. Much of this work has been associated with the effect
of wavy fibers on compressive strength. Naik [20] has offered work based on strength of
materials models intended to be applicable to braids.

ANALYSIS OF THE EFFECT OF FIBER WAVINESS ON STRENGTH

A new approach to estimating the effect of fiber undulation is presented here, that
would seem to be applicable to the case of axial yarn undulation. This approach is based
on an elasticity solution presented by Zhang and Latour [21], and was used by them as a
model for compressive strength of fiber composites. However the elasticity solution can
also be used as the basis for a model intended to show the effect of axial loads on wavy
yarns. The basic geometry is a two dimensional array of wavy yarns, separated by resin
rich areas. As shown by Zhang and Latour [21], the interaction between the axial load in
the fibers and the stresses in the resin rich region can be determined by a straightforward
elasticity solution. Finally, bending of the wavy yarn under the axial load can then be
determined from the matrix stresses, using a beam-on-elastic-foundation model for the axial
yarn. Obviously the model is highly idealized, but leads to a solution for the interaction
between axial forces and bending effects in wavy yams that would seem to give insight into
the present case of a material with undulation of the axial yams.

The basic model to be considered here consists of wavy fibers or yarns,
interspersed with regions of lower stiffness, such as the matrix between fibers or the resin
rich region between yams or bundles of fibers. The model is two dimensional, and uses a
slab to represent the fiber or yam. The two-dimensional slabs representing the axial yams
or fibers are modeled by a simple beam-column on an elastic foundation, that interacts with
the matrix or resin-rich region by means of the normal and shear stresses transmitted
between the slab and material. If the slab (fiber or yam) were initially straight, the equation
of transverse equilibrium for the slab can be written as

d4Y dT d2Y

where EI are the beam stiffness properties, Y is the transverse displacement, r is the half
thickness of the beam, cxy and ay are the matrix stresses at the boundary with the beam,
and T is a tensile force in the beami.

The initial wavy configuration of the axial yams is taken as
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Y0= A0 sinAx (4)

When the tensile force T acts on the fiber, it tends to straighten, producing bending in the
fiber. Eqn 3 can be used to solve for the bending deformation in the fiber by considering
that the force T acts through the wavy geometry, while the bending and matrix stress terms
depend on the additional deformation from the initially wavy configuration. The equation
of transverse equilibrium then becomes

E~4(Y-Y)2r_ +o T Y
_d2___ - (5)

dX4  (Lt&

A beam on elastic foundation model has been used previously by Naik [20] to
estimate the effects of fiber waviness on braid strength. A simplified treatment of the resin-
rich region stresses was employed. However, it was pointed out by Zhang and Latour [21]
that a straightforward elasticity solution can be obtained to determine the elastic stress
distribution in the region between the fibers. This solution was used by Zhang and Latour
to give insight into the fiber buckling problem in compressive loading of fiber composites.
However it can also be used to investigate the effects of axial fiber waviness on fiber
failure. Thus the solution will be shown to also give information about the effect of crimp
of the axial yams on axial failure in the present braided composites.

Zhang and Latour [21] show that the matrix stresses can be related to the bending
deformation Y-YO of the fiber by means of the Airy stress function

O(X, y) = sin Axccosh Ay + c2 sinh y + (6)[ c3y Cosh ,Ay + c 4y sinhAyj

The constants are then determined by obtaining stresses from this stress function, and then
using the stress-strain and strain-displacement relations to obtain expressions for the
displacements in terms of the above parameters and the constants. Finally, the expressions
for the matrix stresses are substituted into Eqn 5 to determine the bending of the wavy
yarn. The bending strain in the yam is then obtained from

d2(r-Yo)
eb•= r dx2 (7)

The total strain in the fiber or yam is then the sum of the uniform axial strain plus the
bending strain, or

CO = + (8)

Thus the additional strain produced in the fiber because of the axial force acting through the
initially waviness can be obtained.

Results from this model are illustrated in Fig 4. It can be seen that the model
predicts a significant reduction in strength with increasing crimp angle of the axial yams.
This would seem to reinforce the intuitive view that the undulation in the axial yams leads
to lower axial strength, and can thus be an explanation for the low axial strengths seen in
the present material. The actual strength reduction seen in the experiments is quite
consistent with that predicted by the model. This of course may be fortuitous, as the model
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is not a precise representation of the actual material. However the correlation of theory and
experiment is encouraging.

SUMMARY AND CONCLUSIONS

The combination of 2-D triaxial braid preforms with advanced composite materials
is being employed or considered in an effort to reduce manufacturing costs. Measured
results of the material stiffness can be predicted by straightforward models that represent
the fiber path in a unit cell. The strength properties of the braid materials can be
significantly lower than those of comparable laminates, and this must be taken into account
in design. The undulation of the fiber path introduces stress concentrations into the fibers.
A model of the effect has been presented that gives insight into the loss of strength in braid
specimens.
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Fig 3. Biaxial stress failure envelope for Fig 4. Predicted effect of crimp
2-D triaxial braid, architecture B, from [15]. (undulation angle) in axial fibers on axial
Line is prediction based on the maximum ultimate strain.
fiber direction strain failure criterion.
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INTRODUCTION

Composites with the tetragonal zirconia polycrystals (TZP) matrix containing
inclusions of hard and stiff carbides show better mechanical properties than the TZP matrix.
Dense bodies with WC, SiC, TiC or CrxCy additives were widely investigated during last few
years [1-9]. These composite systems are harder and tougher than the TZP ceramics.
Particularly, composites containing WC and TiC seem to be very perspective. Due to their
very good wear resistance, they can be applied in the industry. In this paper we present the
results of investigations on fabrication of the composites with another type of carbide additive.
This is a TiC/WC solid solution of TiC type structure. Such carbide is applied in the cemented
carbides technology.

EXPERIMENTAL

In the presented work an yttria stabilised zirconia solid solution (Y-TZP) of 2.9 mole
%Y20 3 content, prepared by the coprecipitation-calcination method [10], was used as a
matrix. A carbide phase applied as an additive was a commercially available titanium-
tungsten carbide powder made by Baildon, Poland. The average Ti:W mole ratio was of 3:1.

Homogenisation of composite components was achieved by the rotation-vibration
milling of the powder mixture in ethanol. Composite powders of the carbide content ranged
from 10 to 50 vol.% were obtained. These powders were hot-pressed in a graphite die at
1400'C with 30 minute soaking time. The mixture containing 20 vol.% of the (Ti,W)C was
similarly treated also at 1300, 1500 and 1600 °C. The applied pressure was 25 MPa.

Bulk densities of the samples were determined by the Archimedian method. Relative
densities were estimated using densities of the composite components: 6.1 g/cm 3 for zirconia
solid solution and 7.5 g/cm3 for (Ti,W)C carbide.

X-ray diffraction was used to determine the phase composition of the samples.
Young's modulus was calculated on the basis of ultrasonic measurement [11]. Vickers
indentation technique was used for the hardness and fracture toughness measurements
(Palmqvist's crack model and Niihara equation [12] were applied). Hardness was measured
using 1.96 N loading. Palmqvist's cracks in the systems were caused applying the indent force
of 49.05 N.

Wear resistance was tested according to the Dry Sand Test method. The abrasive
powder (SiC of 0.4-0.5 mm grain size) was introduced between the rotating rubber wheel (of
50 mm diameter and 15 mm width) and the tested sample. The wheel load was of 44 N. The
volume of the removed material resulting from the 5000 revolutions of the wheel was taken as
a measure of material wear susceptibility.
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For the microstructure investigations electron microscopy techniques were used. The
SEM images were obtained at 20 kV accelerating voltage. Samples were previously coated
with carbon film to eliminate the charging effect.

Thin foils for TEM investigations were prepared by mechanical polishing with the
Gatan 656 Dimpler and final ion thinning with the Gatan DuoMill. The microstructure
observations were performed with TEM Philips CM20 Twin (200 kV) equipped with Link
eXL1 EDS attachment enabling chemical analyses. The local chemical composition was
performed using 10 nm electron probe.

RESULTS AND DISCUSSION

X-ray diffraction shows (Fig. 1) that tetragonal zirconia and (Ti,W)C are the only
detected phases in all investigated material. Densities and mechanical properties of the
composites and the matrix material are collected in Table I.. These data show that after heat
treatment at 1400'C a sufficient (>98%) densification was achieved only in the systems with
low (10 and 20%) volume of the added carbide. Fully dense composite samples reveal better
mechanical properties than the zirconia matrix. They show 40% lower wear susceptibility than
the TZP matrix, especially in the samples sintered at 14000C. Composites containing 30% or
more carbide additives show open porosity and have very poor wear resistance. Typical
microstructures of the studied material are represented in Fig 2. The increase of the (Ti,W)
carbide additive is manifested by a gradual deterioration of the structure. The bright particles
embedded in the fine grain matrix correspond to the (Ti,W) carbides with an average grain
size of 1 Jm. However, one can observed a wide range of grain size distribution ranging from
less than 1 pim and up to 5 [Lm. Such a distribution influences the fracture toughness of the
system. The crack deflection process is a typical mechanism of fracture toughness increase in
particulate composites. A crack deflection in the TZP-(Ti,W)C system occurs around smaller
grains (Fig.3a), contrary to transgranular cracks observed in the case of the bigger ones
(Fig.3b). The fracture toughness increase observed for dense composite bodies is about 15-
20% compared to the matrix.

0 [cps] - tetragonal zirconia500- c0- carbide

400- r
No

300-
M M

M
200- 1300

1000

1600

2 theta 25 35 45 55 65

Fig.1. X-ray diffraction pattern of the composites containing 20 vol.% of carbide
manufactured at 1300 and 1600'C.
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Fig.2. SEM micrographs of the TZP-(TiW)C composites microstructure. Samples hot-pressed
at 1400'C. Carbide content: a - 10, b - 30, c -50 vol.%, respectively.
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TABLE I.
Density, mechanical properties and wear test results.

HP Bulk Relative Open Young's Vickers Fracture Wear

System Temp. Density Density Porosity Modulus Hardness Toughness [mm 3]
[0C] [g/cm3 ] [%] [%] E RV KI0 (±1.0)

(±0.02) [GPa] [GPa] [MPam, 5]
1300 6.05 99.2 - 206 +4 13.0 +0.4 4.3 ±0.1 13.2

Matrix 1400 6.06 99.3 - 210-±3 14.2 +0.4 4.7 ±0.1 12.5
1500 6.07 99.5 - 206±6 12.8 ±0.3 5.1 ±0.4 12.9
1600 6.08 99.7 - 209 ±8 12.8 ±0.5 4.2 ±0.1 12.9

10%(Ti,W)C 1400 6.18 99.0 - 221 ±6 13.6 ±0.5 5.0 ±0.1 7.4
20%(Ti,W)C 1300 6.21 97.3 - 214 ±14 14.0 ±0.9 5.2±0.2 9.9

1400 6.27 98.3 - 236±13 14.7±1.4 6.2 ±0.9 7.4
1500 6.34 99.4 - 235 ±20 14.8 ±0.3 5.7 ±0.3 9.6
1600 6.37 99.8 - 250 ±21 15.6 ±1.4 6.0 ±0.6 9.2

30%(Ti,W)C 1400 6.11 93.7 2.8 224 ±24 15.7 ±1.4 5.2±-1.0 25.1
40%(Ti,W)C 1400 6.07 91.1 6.8 222 ±15 10.0 ±1.5 5.71±0.7 42.1
50%(Ti,W)C 1400 5.96 87.0 12.1 200 ±16 8.9 ±0.7 4.6 ±0.4 89.0

a
" " W-4 00X S [IA 407 10T14

, a g • IN

Fig.3. SEM micrographs of the crack path in the TZP-(Ti,W)C composite.
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Figure 4 shows typical areas of the composite microstructure. Large grain of (Ti,W)
carbide of 3.5 pLm in diameter reveals a dislocation substructure in a strong diffraction
contrast. The carbide grain is surrounded by the tetragonal zirconia crystals of a much smaller
particle size (0.3-0.6 gtm) showing, from grain to grain, a different diffraction contrast
(Fig.4a). Though a predominant number of TZP grains has a tight contact with the carbide
particles, there are, however, minor areas of worse adherence. The presence of extinction
contours in the micrograph of the (Ti,W) carbide shown in the Figure 4b, indicates that the
TZP grains interact with the former one by axial compression. It should be noted that the
(Ti,W) carbide grains consist very often from smaller sub-grains separated by low-angle
boundaries. In all observed cases the extinction contours were visible. It suggests that a
deformation mechanism be involved. Most probably, these contours can be attributed to the
compressive stresses which have been built up in the carbide grains due to the coefficient of
thermal expansion mismatch in the system (cTTzp= l.0-10-6 C-l, acarbide= 8 .0 10-6 C'I).

Observations of grain boundaries and their surroundings between zirconia and (Ti,W)
carbide grains exclude the possibility of forming intermediate phases at the temperature of
14000C.

a

Fig.4. TEM micrographs of the composite with 20 vol.% of (Ti,W)C.
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CONCLUSIONS

Hot pressing at 1400'C, which is the best temperature as far as the TZP matrix
properties are concerned, allows achieving dense composite bodies in the TZP-(Ti,W)C
system containing up to 20 vol.% of carbide. The increase of Young's modulus, hardness and
fracture toughness for this composite is observed. Additionally, its wear susceptibility of the
composite in the Dry Sand Test is significantly lower than in the case of the ,,pure" TZP
matrix.

Microscopic investigations confirm a good adherence between zirconia and carbide
phases. Stresses caused by the coefficient of thermal expansion mismatch do not evoke
microcracks in the investigated system.
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INTRODUCTION

Magnesium alloy matrix composites reinforced with both continuous fiber and discontinuous
reinforcements (particulate, short fiber and whiskers) have stronger challenge in aviation and
astroaviavion fields than aluminum and titanium matrix composites due to their lighter weight or specific
properties [1, 2, 3]. There are some problems on material system design and preparation remained to solve
for material workers in both discontinuously and continuously reinforced magnesium matrix composites.
It appears that because of price and mechanical specific performance factor discontinuous reinforcements,
especially particulate, are less selected to reinforce magnesium matrix composites [4, 11. Even though
continuous fiber reinforced magnesium matrix composites can obtain higher performance their
price/property is not always exceeding that of discontinuously reinforced one. And the mechanical
behaviors of the latter are likely to increase to higher level with relatively simple manufacture route.
Silicon carbide particle is a very cheap industrial abrasive and provided with benign chemical and
physical compatibility with most magnesium alloys, particularly in preparing with ordinary powder
metallurgical routes. This type of composite materials also has moreover better machining characteristic [6],

which is different from continuous fiber composites. Abachi et al studied fracture toughness of particulate
reinforced magnesium composites [7, and they found that the fracture toughness decreases with the
increase in SiC particle content, and the shapes of the ceramic particle show some effect on the fracture
toughness. e. g., sharp irregular SiC particles reduce the fracture toughness of composites more than that
of the blocky type. According to the investigation on ceramic particle size SiC particulate reinforced
aluminum composites has effect on the mechanical performances of the composites, with the same
preparing route the thinner the particle the higher the strength properties for the same content of
composites as the particles are well-distributed. With powder metallurgical route there is a problem that
the size match between ceramic particles and metal powders. If this ratio of both particle sizes is too large
or small, the homogeneity of the ceramic particle distribution in composite must be poor so that the
properties of the materials may be poor, too. In this paper the composite design, i. e., thickness of
reinforcement and matrix materials, is discussed in the light of mechanical behaviors to provide some
interaction of raw materials, preparation route and properties of ceramic particles reinforced magnesium
composites.

EXPERIMENTATION AND RESULTS

Materials and Experimental Procedure
Silicon carbide particulate is used to act as the reinforcement of magnesium alloy MB 15 (Mg-5Zn-0.6Zr).
The composites were fabricated by P/M method. The silicon carbide particulate is industrial abrasives
with two normal sizes of 5 and 20jtm. The shape of the particles is angular. The volume fractions of
ceramic particles are 10 and 20%. The matrix alloy is prepared with element mixture method. These metal
powder's dimension is 250-200 mesh (50-74utm in diameter). The metal powder and ceramic particles
are mixed in a nylon cylindrical tube at 24rpm for 4-6hours. After cold compacting of mixture in a
vacuum mold the blanks then are heat-pressed and extruded into cylindrical sample with a diameter of
*l16mm. After machining the T6 treatment is carried out on the specimens. The dimensions of the
specimens are dW6x30mm, following grinding for precise dimension. The tensile test is conducted on
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INSTRONI 195 Universal Material Test System according to Chinese National Standard GB228-76. The
displacement-load curves are recorded automatically and the proof stress, engineering proportional limits
and elastic moduli of tested materials are measured and calculated in the light of the standard illustration.
The microstructure of the extruded samples is analyzed on a microscope modeled Neophont21 and a
scanning electronic microscope (SEM) modeled S-2700. The electron diffraction of thin-crystal analysis is
conducted on JEM-200CX transmission electronic microscope.

Microstructure analysis
In Figs. 1 the micrographs show the microstructures of the composites in longitudinal sections. It is easy

to find that the distribution of the ceramic particles for 5gm, 10% SiCp is more homogeneous than that of

5pm, 20% SiCp. In the latter ceramic particles in some zones are clustering heavily (Fig. 1 a, b), and more

severely in very few zones there exists non-infiltrating cases. That inhomogeneous

25pm n •i 120g•m

S20p•m Slam I

Fig. I Micrographs of the SiCG/Mg composites

a) 10%, 5gm SiCp, b) 20%, 5Alm SiCp, c) 20%, 10ýim SiCp, d) as the same to c)

distribution has strong effect on the mechanical properties of the materials (see next section). This result is

induced principally by the unappropriate size match of the metal powders and ceramic particles during

blending the raw materials. i. e. , the particle size ratio dm/dsicp is as high as 12-15, when hot pressing the

mixture the ceramic particles thoroughly surround the metal particle, and after extrusion the ceramic

particle are striated and not well spread in metal matrix. As an alternative measure the coarser ceramic

particles, normal diameter of 20jim, are taken. The ratio dm/dsi@p is decreased to about 3.5, thus the

distribution of the reinforcing particles is on the whole going to more homogeneous (Fig.1 c, d). It is

found that near interfaces there are some zigzag marks of chemical reaction (Fig. 2 a), at least in part of

interfaces. The small amount of long-winded amorphous products near the interface may be formed at

high fabricating temperature. Magnesium and the oxidized layer SiO2 outside the silicon carbide particles

react at this temperature as following:
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2MfgO + SE H- " g2 Si+ CO2  (1)

4Mfg+ SVi2 -JL-- 2g gO + M g2 Si (2)

• ' 500nm

Fig. 2 Micrographs of TEM analysis

a) Micromorphology at interface (up-right) b)Electron diffration pattern

The reacted product MgO and Mg2Si are composed into compound, which is crystalline or amorphous

state (the diffraction pattern is some unclear circle). In about 10 observed zones most interfaces are

straight one and not found gradient evidence. Near minority interfaces there are small amount of lump

products which is considered to be inclusion in the matrix alloy. The aging precipitates are needle-like and

located in two orientations crossed about 90 degrees (Fig. 2 b). These precipitates near the interfaces are

smaller than that far away to interfaces. And on some grainboundary there are also lump products which

may be the undissolved metallic compound during heat treatment. It is seen that spherical aggregative

particles are at few grainboundaries, which are considered to be magnesium oxide formed in sintering

process. These oxides may be the main ringleader of low ductility for the composites.

MECHANICAL PROPERTIES AND ANALYSIS

Table 1 shows the mechanical properties measured of the materials. As a contrast the same data for

aluminum matrix composites also cited in it. It is obvious that the reinforced materials have higher

strength and modulus, especially greatly enhanced elastic deformation resistance , but lower ductility. In

this table one also can find that this test obtained higher strength than that summarized in literature for the

same materials E. According to the comparison of specific strength and absolute weight between

magnesium and aluminum alloy matrix composites the former shows a little better application expectation.

Table 1. Comparison of Mechanical properties of magnesium and aluminum matrix composites

Materials Proportion Proof Ultimate Ductility Modulus Density Specific

limit (7P strength strength strength aFb/p

/MPa o0.2/MPa Gb/MPa 8/% E/GPa p/g/cm xl03m

MB15(Magnesium alloy) 250.0 320.0 6.0 45.0 1.76 18.55
l0SiC,(5pm)-MB15 266.0 336.3 366.7 1.53 67.0 1.904 19.65
20SiC,(5lim)-MB15 271.5 339.0 386.5 <0.5 78.1 2.05 19.24
20SiCp(20ýLm)-MB15 274.3 360.3 429.5 0.93 79.5 2.05 21.38

177



LY12(aluminum alloy) 196.0 1 285.0 450.0 112.0 70.0 2.76 16.64
20SiC,(5Lum)-LYl2 318 426 598 2.5 112 2.89 21.11

The increase in ultimate strength of reinforced materials relies on the improvement of ceramic particle

distribution and interfacial bonding state of them. At the same ceramic particle content the strength and

ductility for 20irn composite is better than that for 5pm composite. In the latter the conglomerations of

SiC particles is easy to look and this leads strain/stress concentration within the conglomerations and

results in "hard zone" and "soft zone", both intensify the unhomogeneity in the composites. These

unhomogeneous zones are the origin of fracture in them, cracks will nucleate at relative small strain level.

According to the authors' opinion, the mechanics restrain effect within the particle densely distributed

zones is higher than that of particle scarcely zones [9]. The increase with ceramic particle content in elastic

modulus is apparent, too.

FRACTOGRAPGY

The observations of fracture surface appearance and sectional surface of the fractured tensile specimen are

carried out on SEM. It is seen that although the appearances in matrix area all are ductile microscopically,

the fractures show some brittle characteristic macroscopically exception to controlled alloy. The events of

particle crack and interface failure both observed and the former is less happening. On the sectional

surfaces (near fractured end ) there are a few events of particle fracture and the breakdown may initiate in

interfaces-debonding. This fact implies that the interfaces between ceramic particles and the matrix are

far complete and the mechanical properties of the materials may increase further if more appropriate

fabricating routes are adopted.

CONCLUSIONS

1. PM method may be good routine to fabricate magnesium alloy matrix composites with good

properties. In this test the specific strength 20%, 10jim SiCp/Mg even exceed that of aluminum alloy

matrix composite.

2. The limited data from the present test for magnesium matrix composites illustrate that the mechanical

properties and the microstructure will be improved when the size ratio of metal powder and ceramic

particle is small till to unity by PM route.

3. It is found from TEM analysis that there may exist marks of interfacial chemical reaction, and this

reaction as well as lower ductility of the materials may be induced by exorbitant temperature during hot

pressing.
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MATRIX COMPOSITES IN THERMAL SHOCK PROCESS
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INTRODUCTION

The metal matrix composites often be used in some harsh environments and working
processes, for example, high temperature and high pressure, as well as thermal shock
and so on. In these environment, it is important to predict themo-mechanical behavior
and interfacial stress of the metal matrix composites. Because the rapid variation of
temperature under a thermal shock process will tend to bring out phase transformation
or microstructure change of the material, some complicated coupling effects of material
behavior should be considered. On the other hand, the material strength effected by the
jump behavior of stress and deformation on the interface boundary between the fiber
and matrix should to be studied, especially.

Recently, the developments based on Metallo-thermo-mechanical theory[I-2] and
some numerical method[3-4] are applied to simulate residual stresses of the metal
matrix composites and to predict or control the physical and chemical properties at the
fiber-matrix interface during quenching process[5]. If we see the thermal shock
process to be similar a quenching process, as the development of above analysis above,
it also can be to use to the thermal shock problem of composites which considered
interaction of temperature, microstructure and the stress/strain fields. In this paper, the
rapid variation of temperature in short time as thermal shock are loaded on the metal
matrix composites with a short fiber. As an example of calculation, simulation of the
thermal shock process associated with a Ti-Fe alloy reinforced unidrectionally by SiC
fiber is engaged in this research. In results of this simulation, thermo-mechanical
behavior and the residual stresses of the composites is evaluated, and the strength of the
composites after the thermal shock are also predicted.

GOVERNING EQUATIONS

The detail of introducing the governing equations in the framework of thermodynamics
capable of describing the governing equations for temperature and stress/strain fields
incorporating metallic structures are already reported elsewhere[4-5]. Here, the
fundamental equations are summarized in the following:

Heat Conduction Equations
The transient temperature field T(xi, t) at time t is governed by the equation:
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where x, is the coordination system of the body, k and 14 denote the coefficient of heat
conduction and the latent heat produced by the progressive of volume fraction tr as I-th
phase transformation. ao.j0. is stress power associated with heat generation. Here,

p and c are the density and the specific heat, respectively. And an assumption is made
that a material parameters X is described by the mixture law[6]

N N

x and Z,=1, (2)
I~,l 1=1

where X, denote the material parameter for the I-th phase.

The boundary conditions of heat transfer on the inner surface is assumed to be

-k--- ne = h(T-T) (4)
dxki

where h and T, are the heat transfer coefficient and the temperature of coolant on heat
transfer boundary with unit normal n1, respectively.

Constitutive Equation
Total strain rate hj is assumed to be divided into elastic, plastic, thermal strain rates

and those by structural dilatation due to phase transformation and creep such that
hue• + --J + < + htm + --J (5)

Here, elastic and thermal strains are normally expressed as

1 = -- a .- a-S. , (6)

and
= a(T - To),5., (7)

with Young's modulus E, Poisson's ratio v and thermal expansion coefficient a,
respectively. Here, To is the initial temperature of material.
Strain rates due to structural dilatation and transformation plasticity depending on the I-
th constituent read

N •g = p,¢,o. ,(8)
I=1

where P3 stands for the dilatation due to structural change.

The plastic strain rate is reduced to the form when employing temperature dependent
materials parameters

d, A/. F.NF FF 9F"�" (9)

with a temperature dependent yield function
F F= F(cro., zP, ic, T, ý) ,(10)

with hardening parameter ic, where
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Here, a and Z are the equivalent stress and strain, respectively. Either isotropic or
kinetic hardening type of yield function F is available to be used in the paper. Either
isotropic or kinetic hardening type of yield function F is available to be used in this
paper.

Kinetics of Quenching Process
The type of phase transformation during the heating and cooling is controlled by
diffusion mechanism, and the volume fraction of developing phase such as pearlite may
be expressed by modifying the Johnson-Mehl relation[1 1] as

ý, = 1-exp(-Ve) , (12)

where Ve is defined by
t

Ve = -T i)t(13)
0

Here, we separate the function f(T, oa) into two independent function of temperature

and stress as
f(T, Y.) = f 1(T)f 2 (a.). (14)

Since the time-temperature-transformation TTT diagram under the applied stress o0j in
logarithmic scale deviates from the one without stress which is represented by the
functionf(T), the kinetic equation of diffusion type is often applied to the variations
of pearlite or ferrite structure in quenching processes. An identification of the function
f(T) can be made possible by the use of some experimental data of the structure change.

EVALUATION OF INTERFACIAL STRENGTH

Due to difference of materials behavior between the fiber and matrix composites,
discontinuous phenomenon of thermo-mechanical fields on the interface of MMC
materials during the thermal shock process will be presented. However, in order to
describe the strength on the interface, real composite material are usually made up a
gain-boundary sliding will occur during jump of deformation, especially at high
temperature, which causes the development of local stress concentration[9].

Here, modification of the yield stress on the interface can be realized through Prager' s
kinematic hardening law in following,

a'y = aryo [I - A exp( -CF"P)],(5

where A and C are parameters of the composites dependent on the plastic strain of
interface. cry0 and -, denote the static yield stress and equivalent plastic strain. The
advantage of equivalent of stress on the interface can be used to evaluate strength of the
composite material.

SIMULATED RESULTS

Model of Simulation
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The material for simulation of the thermal shock process was a metal matrix composite
reinforced unidirection with short continuous fibers. The matrix material was a Ti-Fe
alloy (P3 type) consisting of Ti-3.25Fe-2Cr-2Mo in weight percent. The reinforcing
phase was continuous SiC fiber. The diameter of fibers is 100pam. It is assumed that
the fiber is located periodically with the same interval and that each fiber is the same
shape as shown in Fig. 1 (a). Then, the unit cell including a fiber depicted by broken line
in Fig. 1(a) is extracted from the bulk material. For the reason of simplification, a unit
cell is considered as an axisymmertrical problem which is shown in Fig.l(b). The
thermal shock process is loaded on the surface BC and CD which is shown in Fig.2. As
for the finite element calculation of temperature and stress fields based on the obtained
mixture rule of the phase transformations, the following material table are employed:

Table 1 Parameters for finite element analysis
Matrix Fiber

Heat conductivity [cal/mm • deg] 0.0216+0.0513T 0.0203+0.0498T

Density [g/mm ] 7.9 8.1

Specific heat [cal/(g , deg)] 0.086 0.079

Young' s modulus [Gpa] 220.0+0.054T- 350.4+0.039T-
0.00032T2  0.00028T2

Poisson' s ratio 0.32 0.26

Thermalexpansion [1/deg] 0.218x 105 0.18x 10.5

Dilatation of phase transformation [%] 3 M=-0. 0 15; 3p=-0.011
Yield stress [Mpa] 526.5-0.12T- 780.0-0.16T-0.00049T 2

0.00045T2

Hardening coefficient [Mpa] 238.2-0.225T 361.5-0.29T

A D Temperature

I• (•/•i • /N ::650 °( --C,,

B C 1 sec time
Fig. 1 Cross section of metal matrix Fig.2 Thermal shock process loaded

on composite and unit cell model. metal matrix composites

Results of Simulation
Figure 3 shows the variation of temperature distribution on the center of the fiber and
the surface of the matrix comer. The volume fraction of the austenite and pearlite
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transformation at t=3.5(sec) in Fig.4. The residual stresses on the section AD shown in
Fig.5. Figure 6 shows distribution of the residual equivalent stress in the model. From
these results, we can observe that the temperature variation of composites of these two
size ratio are nearly similar, but the distribution of pearlite transformation near the
interface has different form. When pearlite transformation produced on the, i.e.
t=3.5(sec), distribution of the equivalent stress which is shown in Fig.6 exhibits jump
phenomenon. The jump of equivalent stress is remained until to finish of the thermal
shock process.
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Fig.3 Temperature variation on point A of fiber and point C of matrix comer.
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Fig.4 Distribution of austenite and pearlite transformation at t=3.5(sec).
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Fig.5 Distribution of stresses on section AD. Fig.6 Distribution of equivalent stress.
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CONCLUDINGS

Metallo-thermo-mechanical theory previously developed is extended to simulated the
interfacial stress and residual stress of MMC after a thermal shock process. By adopting
this theory, finite element simulation of a unit cell of metal matrix composites is carried
out, and some results of the calculated distribution of temperature and residual stress
are discussed. From these results, we can obtain some useful conclusions:

(1) The simulated results of temperature and residual stresses based on the coupled
analysis here describe the significant phenomena during phase transformation due to
the thermal shock. Interfacial stress of MMC can be evaluated within an
inhomogeneous structure.
(2) In this connection the rapid variation of temperature due to thermal shock are of
great importance to predict the damage or fracture on the interface. The calculated
interfacial stress can be used to evaluate the strength of the metal matrix composites,
and to optimize the structure of the material.
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ABSTRACT

In the design of advanced composite materials containing particulates, one important problem is
the magnitude of the stress concentration in the matrix around the reinforcing elements. In this
theoretical study, the steady-state stresses resulting from a dynamic loading in a particulate rein-
forced metal matrix composite are determined, and the stress concentration factors at the interface
between the particle and the matrix are obtained in an effort to determine the parameters govern-
ing the dynamic response. Numerical results indicate that the dynamic stress concentrations are
dependent on the frequency of excitation and elastic properties of the composite and, they can be
larger than those encountered under static loading. It is also found that the dynamic stress concen-
tration is significantly influenced by the interphase layer between the particle and the matrix. The
results can be used to determine an optimal interphase to reduce the dynamic stress concentration.

INTRODUCTION

Particulate reinforced metal matrix composites (PRMMCs) are becoming important structural ma-
terials in the aerospace and automobile industries because of their high strength, excellent wear
resistance and retention of strength at elevated temperatures. In spite of these desirable properties,
the applications of PRMMCs and other forms of composites are generally limited by their poor
fracture and fatigue properties.

Many experimental and theoretical studies have been conducted in order to gain a fundamen-
tal understanding of the influence of various parameters on the fracture and fatigue strength of
PRMMCs. One important finding is the presence of microcracks at the ends of reinforcements.
These microcracks eventually link up to form macrocracks [1]. The predominant factor that would
aid in the formation of microcracks is stress concentration in the matrix around the reinforcements.
The degree of this stress concentration depends on the shape, size and elastic modulus of the rein-
forcements.

The internal stresses in PRMMCs under static loads have been addressed in references [2,3,4].
Bogan and Hinders [5] considered dynamic loads and presented results for continuously reinforced
fiber composites by using a two dimensional model. In three dimensions, the dynamic stress fields
around rigid spherical inclusions have been determined [6]. When the inclusion is elastic, no
numerical results for the dynamic stress field are, however, available even though some related
problems have been studied by a number of investigators [6,7,8].
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In this paper, the steady-state stresses resulting from a dynamic loading in a particulate rein-
forced metal matrix composite are determined, and the stress concentration factors in the matrix
are obtained. The formulation includes interface layers between the fiber and matrix. The interface
layers exist as a natural consequence of material processing or may be intentionally introduced to
reduce the stress concentration and improve mechanical properties of the composite. For simplic-
ity, the effect of interaction of neighboring particles are ignored. Therefore, the results are valid
for low volume fraction of particles. Numerical results for a range of frequencies and material
properties are presented. Due to lack of space, results showing the influence of interface layers
could not be included here. Briefly, the dynamic stress concentrations are found to be dependent
on the frequency of excitation and elastic properties of the composite and, they can be larger than
those encountered under static loading.

BASIC EQUATIONS

The three dimensional model studied in this
work is shown in Figure 1. The particulate re- Matrix

inforcement is represented by a solid spherical /J..V. Layers
particle of radius ao and the interface layers are A.A
represented by concentric spheres. Owing to the
geometry, the problem is best described by spher-
ical coordinates (r, 0, q0). The particle, interface
layers and matrix are assumed to be linearly elas-
tic and isotropic, and the contact between them
is assumed to be welded. The elastic property of
each medium is given by Lamn constants AX and
/ii and the density is denoted by Pi. Reinforcement

The dynamic excitation is provided by an in- tttttt
cident plane compressional wave propagating in IncidentWaves

the positive direction of the z-axis. The problem
is thus symmetric about the z axis and field quan- Figure 1: Schematic of the problem
tities such as displacements and stresses are inde-
pendent of the spherical coordinate q$.

The time variation is assumed to be of the form eiwt, where w is the circular frequency of exci-
tation. Thus, all field quantities have the same time variation which is suppressed in all subsequent
representations for notational convenience.

For each domain of the model the displacement vector, U = (Ur, Uo, UO), satisfies Navier's
equation of motion of dynamic elasticity with zero body forces:

(Ai + 2/i)V(V • U) - pjV x V x U + piw2U =0 (1)

Following Helmholtz's decomposition of a vector field, the general solution of equation (1) can be
written, taking symmetry into consideration, as

U = Vb + V x V x (er rX) (2)

where er is a unit vector in the radial direction, and the potentials 4b and X satisfy

(V 2 + = 0 (3)
(V2 +32)X= 0 (4)
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In the above, ai and 3i are the compressional and equivoluminal wave numbers, respectively.
They are defined by

2? U)2 2ioi W 2i(A~i + 2j(5)

INCIDENT, SCATTERED AND REFRACTED WAVE FIELDS

In the matrix, the wave field consists of incident and scattered waves. Let the incident plane
compressional wave travelling in the positive z direction be represented by two potentials

V = ei(a2 z-Wt) ; i = 0 (6)

In anticipation of writing the boundary conditions in spherical coordinates, the incident poten-
tial is expanded in terms of the spherical eigenfunctions as

00

E = Z(2n + 1)in in(a2r)Pn(cos 0) (7)
n=O

where Jn is the spherical Bessel function of the first kind and Pn is the Legendre polynomial.

Expressions for the scattered wave field in the matrix can be obtained from the solutions of
the wave equations (3) and (4). In writing the expressions for the scattered field, only the waves
propagating outward from the particle need to be considered. Thus the scattered waves are given
by

00

E= Ain hn (a2r) Pn (cos 0) (8)
n=O
00

X = E A2nhn(832r) Pn(cosO) (9)

where hn is the spherical Hankel function of the first kind. The total field in the matrix is obtained
by the superposition of incident and scattered fields.

The wave field in the particulate reinforcement, being confined to a spherical volume, are
standing waves. They can be represented by

00

= Z Bin jn(o(,r) Pn(cosO) (10)
n=O
00

X = •: B 2.jn(/31r) P.(cos0) (11)
n=0

The wave field in the i-th layer can be written as

00

C=ln in(air) Pn(cos0) + Din Y(air) Pn(cos0) (12)
n=O
00

Xi E C~inin (,31 r) Pn(coOS) + D~in Yn(31 r) Pn (coOS) (13)

n=O

where Yn is the spherical Bessel function of the second kind.
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By substituting equations (7-13) into equation (2), the displacement field in the media can
be determined. The stress field is then obtained from the displacements by using the constitutive
law of the media. The unknown constants An, A2n, ... , D2n in equations (8-13) can then be
determined by imposing the continuity of displacements and stresses at the interfaces.

NUMERICAL RESULTS AND DISCUSSION

In this section results are presented to show the influence of the particulate reinforcement on the
dynamic stresses in the matrix. Because of space constraints, results showing the influence of
layers will only be presented at the conference.

The dynamic stresses in the matrix are expressed in dimensionless forms by normalizing with
respect to the magnitude of the maximum incident stress, ao:

q,_- =i ' ij j r,, (14)

Thus the values of aj can be considered as dynamic stress concentration factors. The dynamic
stress concentration factors depend on the ratio of shear moduli Y* = I~o/I-m, Poisson's ratios vo
and vm,, ratio of mass densities p* = Po/Pm, and the frequency of excitation which is expressed in
nondimensional form through

w* = wao (Am (m

where ao is the radius of the particle. The following values of the parameters have been chosen
for the computations:

= 2,8,15,25,30

vo,v/m = 0.20,0.25,0.30,0.35,0.40

p* = 1,2,5

These values are sufficient to cover the range of parameters which might be encountered in prac-
tical applications and demonstrate the essential behavior of dynamic stress concentration.

The nature of the dynamic excitation is better appreciated by considering the limiting static
case. When the frequency approaches zero, the applied stress field at infinity approaches

azz = -0o (16)

=rn =o (17)
- Vm

aXY = ayz = azx = 0 (18)

where a,, is a constant and Urm is the Poisson's ratio of the matrix. The stress field of equations (16-
18) is triaxial. Thus, the results presented herein are for the dynamic counterpart of this triaxial
load.

Figure 2 illustrates the angular distribution of aor, aor and o,* in the matrix at the interface
for different values of the dimensionless frequency w*. In this case, it is to be noted that, when
w* = 0.02, stresses converge to the static solution corresponding to the loading given by the
equations (16-18) and exhibit symmetry with respect to the z = 0 plane, as expected. At other
frequencies, the applied stress field is not symmetric since the incident wave only illuminates the
bottom half of the particle. The scattering phenomenon then dominates, considerably distorting
the results from the static solution. It is apparent that the frequency has a strong influence on the
stresses. Maximum values of ar occur at 0 = 7r for the five frequencies considered. A detailed
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calculation showed that maximum of oi* in the frequency range 0 < w* < 3.0 always occurred
at 0 = ir. At this location, all shear stresses vanish due to symmetry and, therefore, the normal
stresses are principal stresses. Moreover, o0r~ is the major principal stress since it is greater than
both ario and or* . It can be seen from Figure 3a that maximum values of or* are greater than unity.
This would mean that the presence of a particle in the matrix amplifies this stress component under
the given dynamic loading. For frequencies w* = 1.5 and 2.0, the maximum values of or*, are
also higher than the static value, suggesting the importance of dynamic loads in the design of
composite materials. The stress components a*o and or• are smaller than unity and therefore not
critical.

Shown in Figure 3 are maximum values of r,*r in the matrix around the interface as a function
of the dimensionless frequency, w'*, in the range 0 < w* < 3.0 for different values of p*. The
stress components or and o,;, were found to have values less than unity. Hence they are not
critical and not presented here. However, the dynamic stress concentration factor for the stress
component otr reaches values over 2.0. The ensuing discussion therefore considers only this stress
component. It is seen that the ratio of shear moduli, M%, strongly influences 4ra. As I*increases,
the maximum value of or.r increases and the location of the maximum stress tends to shift towards
the high frequency end. The maximum dynamic stress concentration factor is 10 to 20 percent
higher than the static values. In the case of M* = 8, for example, the dynamic maximum value is
about 15% higher than the static value.

Figure 4 shows the effect of density on a.*, at 0 = 7r as a function of the normalized frequency.
All curves start off from the same point since the inertia has no effect when the frequency is very
small. As p*increases, the location of maximum or,., tends to shift towards the low frequency
end. Increasing p*from 1 to 2 does not seem to alter the maximum value of the stress. However,
increasing p*to 5 results in a significantly higher maximum occurring at a low nondimensional
frequency around 0.5. In this case, the maximum dynamic stress concentration factor is about
58% higher than the static value.

CONCLUSION

The stress field at the interface between the particle and the matrix caused by a plane harmonic
compressional wave has been studied. The results for the dynamic matrix stresses show that they
are significantly different from the static stresses and, values above the static ones occur at various
incident frequencies. The dynamic stresses also depend strongly on the elastic properties of the
particle and the matrix. A significant mismatch of shear moduli and mass densities would result
in large dynamic stresses. The largest stresses produced at the interface between the particle and
the matrix are normal stresses which generally reach maximum values upto 58% greater than their
corresponding static values.
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TiC INCLUSIONS SYNTHESISED IN SITU IN THE ZIRCONIA
MATRIX

Waldemar Pyda
University of Mining and Metallurgy, Faculty of the Materials Science and Ceramics,
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ABSTRACT
The carbothermal reduction of titania originated from the zirconia s.s. was used to

produce in situ the TiC phase. The carbothermally reduced zirconia powders and compacts
were mainly composed of tetragonal and monoclinic phase. The samples heated at 14000C
contained TiC and some samples heated at 1500'C showed additionally the ZrC phase. The
phase composition of the samples depended on carbon concentration, heating temperature and
atmosphere. Gaseous products of the TiC and ZrC formation, (CO), suppressed densification
of the compacts. At small carbon concentrations improved characteristics of the zirconia
materials were obtained.

INTRODUCTION
Thermodynamic calculations' indicate that TiO2 can react with carbon to produce

titanium carbide at temperatures higher than 1280'C under a partial pressure of CO of latm.
Lowering the partial pressure of CO falls the temperature of the reaction and presumably
accelerates the reaction at a given temperature. The calculated range of temperatures which
enables the synthesis of TiC covers the temperature rage of preparation of tetragonal zirconia
polycrystals in the Y20 3- TiO2- ZrO2 system2 .

The aim of the presented work was to synthesise TiC in situ in the zirconia solid
solution stabilised with Y20 3 and TiO2 and to study an effect of the carbothermal reduction of
TiO2 originated from zirconia s.s. on properties of the tetragonal zirconia polycrystals.

EXPERIMENTAL
A co-precipitation and calcination method was used to prepare the powder of zirconia

solid solution stabilised with 1.5 mole % Y20 3 and 18 mole % TiO 2 (sample P0). A zirconia-
yttria-titania hydrogel was co-precipitated from an aqueous solution of appropriate chlorides
with NH4OH at a pH of 9. The gel was washed with distilled water, dried and calcined at a
temperature of 700TC for 2h. In the same way the zirconia powder stabilised with 3 mole %
Y20 3 (sample P3Y) was prepared. A calcination temperature of 950 0C and a soaking time of
lh were applied.

Homogeneous mixtures of P0 and an ethanol solution of phenol - formaldehyde resin
were prepared. The mixtures contained 33% (sample P6) and 200% (sample P36) of the
carbon which was indicated by a stoichiometiy of the reaction of TiO 2 and C. The mixture
P36 was heated in an Ar atmosphere at 1500TC for 2h (sample P36w) to synthesise the TiC
phase. This powder was used to prepare materials composed of 25 weight % of P36w and 75
weight % of P0 or P3Y. Isostatically pressed green bodies (P=350MPa) were sintered at 1400
and 1500'C for 2h in argon in a carbon bed. A furnace with Superkanthal 1900 heating
elements was used. The mixtures P6 and P36 were also uniaxially pressed under a pressure of
5MPa and heat treated at 1400 and 1500'C for 2 hours in argon in a carbon bad. A furnace
with tungsten heating elements was used.

X-ray analysis (CuKa radiation) was applied to characterise a phase composition of
the powders and sintered bodies. The evaluation of phase contents was made by the following
semi-quantitative formulas:
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V1.603. I( 11),,, (1), VI(11 (2),
1.603. 1(1 11),,, + I(1 11), + I(1 11),. 1.603. 1(1 11),,, + I(1 11), + I1(111),.,

V,,, + V7,,,, + V, = 1 (3)

were: I denotes an integral intensity of an advisable peak of the monoclinic, m, tetragonal, t,
and titanium carbide, TiC, phase. In the case of absence of TiC the equation (1) is reduced to
the form given by Porter and Heuer for the quantitative determination of the monoclinic phase

3content in the system .
Transmission and scanning electron microscopy were applied to observe the

morphology of the powders and the microstructure of the sintered bodies, respectively.
Fracture toughness, Kc, was determined on polished surfaces by Vickers' indentation

using the Palmqvist crack model4 .

RESULTS AND DISCUSSION
Zirconia powders and composite materials with the TiC phase

The calcination of the zirconia-yttria-titania gel resulted in the powder of nano-
crystalline sizes (-20nm) and isometric shapes (Fig. 1 a). The phase of tetragonal symmetry
dominated in the powder (Fig.2). The second phase of monoclinic symmetry was found in the
powder P0 in amount of 19.2±0.5 % (Tab. 1).

a b
Fig.1. TEM microphotographs of the powders: a - original powder calcined at 7000C for I h in air, b - P36
mixture heat treated at 1500'C for 1 h.

Table 1. Properties of the powders.
Property P0 P36w as synthesised P36w milled

Specific surface area, m2/g 68.4 105.6 108.5
Monoclinic phase content, % 19.2±0.5 14.0 36.3

Tetragonal phase content, % 80.8±0.5 83.5 61.2

TiC content, % 0 2.5 2.5

The mixture of P0 and the carbon precursor heated at 15000C for 2h in argon showed
an increased crystallite size (-0.3[tm, Fig.lb), decreased amount of the monoclinic phase
(Tab. 1) and detectable amount of TiC (Fig.2). An increased specific surface area of P36w can
be attributed to remains of non-reacted carbon. This suggestion was confirmed by DTA-TG
measurements (Fig. 3). The DTA curve in Fig. 3. shows two exothermic peaks at 511 and
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638°C. A weight increase of the sample accompanies the first peak. This is due to the
oxidation reaction of TiC. The minimal amount of TiC in the powder calculated on the basis
of the sample weight increase was 5.5 weight %. This means that 59.5% of TiO2 existing in
the zirconia solid solution took part in the reaction with carbon. It caused a change of the
zirconia s.s. composition to the probable following one: 1.7 mole % Y2 0 3 - 8.2 mole % TiO2 -

90.1 mole % ZrO2. A weight decrease accompanies the second peak. This can be attributed to
the oxidation reaction of the non-reacted carbon. Its amount was estimated on about 6.3
weight % in relation to the starting sample. Attrition milling of P36w brought about an
increased content of the monoclinic phase. This powder was used to prepare composites.

The data of Table 2 and 3 indicate that introducing P36w to the P3Y matrix caused
a distinct decrease of the tetragonal phase content and apparent density of the composites
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Table 2. Phase composition of the composites.

Sample Vm, % Vt1 % VTiC, %

3Y-TZP, 1400°C 15.3 84.7 ----

3Y-TZP, 15000C 0 74 tetragonal+36 cubic ----

75%P3Y+25%P36w, 1400'C 47.3 52.7 ----

75%P3Y+25%P36w, 1500'C 68.4 31.6 ----

P0, 14000C 51.7 48.3 ----

75%PO+25%P36w, 14000C 67.5 28.1 4.4
75%PO+25%P36w, 1500'C 43.2 53.2 3.6

Table 3. Properties of the composite materials sintered in argon in a carbon bad.

Sample Sintering Apparent HV, GPa Kic, MPam°5 Load, N
temperature, TC density, g/cm 3

P3Y 1400 6.00±0.03 11.4±0.3 5.0±0.1 196

P3Y 1500 6.01±0.02 13.9±0.3 5.2±0.2 98.1

75%P3Y+25%P36w 1400 3.48±0.01 2.4±0.1 2.7±0.1 98.1

75%P3Y+25%P36w 1500 4.78±0.03 5.3±0.2 2.6±0.1 98.1

P0 1400 5.39±0.02 8.0±0.3 3.4±0.1 196
P0 1500 5.42±0.04 broken sample ----

75%P0+25%P36w 1400 4.09±0.3 1 4.8+0.2 J 3.0±0.1 196
75%P0+25%P36w 1500 5.64±0.05 11.2±0.6 4.6±0.1 196

when compared to the matrix and, as a result, deterioration of fracture toughness and
hardness. There were no TiC observed. The combination of effects of the oxidation of the
carbon remains and/or TiC which occurred in P36w could be responsible for this behaviour.
The additional mechanism could be created by particles of the carbon remains which slowed
down sintering processes when acted as inert inclusions.

The changes in the tetragonal phase content of the samples composed of P36w and the
P0 matrix followed the density changes (Tab.2 and 3) similarly to those observed in the case
of P36w-P3Y composites. The TiC content increased with the sintering temperature. This
suggests the continuous reaction of the carbon remains with TiO 2 from the matrix zirconia
s.s.. The additional carbon consumption resulted in an increased density of the bodies and
improved mechanical properties (Tab.3).

a b
Fig.4. SEM microphotographs of the composites sintered at 1500°C for 2h: a) 3Y+P36w, b) P0+P36w.
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The destructive influence of the P36w with non-reacted carbon on the microstructure
of P36w-P3Y composites is shown in Figure 4a. In contrast to that, the microstructure of
P36w-PO composites was uniform, fine grained, free of cracks and large pores (Fig.4b).

Zirconia bodies with TiC synthesised during sintering
The materials derived from the original PO powder showed the microstructure

composed of the cubic zirconia s.s. (Fig.5) undoubtedly stabilised with vacancies that were
formed during the deoxidation process 5. The additives of carbon changed the phase
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Fig.5. X-ray diffraction patterns of the samples sintered at 1400 and I 500'C for 2h.

composition of the P6 and P36 materials. The TiC and monoclinic phases appeared as a result
of carbothermal reduction of TiO2 and simultaneous destabilisation of zirconia s.s.,
respectively. The TiC content increased with an increase of carbon additive and the sintering
temperature. At the highest temperature applied ZrC has been detected in P36. This fact
indicates very low partial pressure of CO (< 0.I7atm according to Ref.1) in the system and
explains differences in the phase composition of the P0 and P36 samples heated in furnaces
with the tungsten and Superkanthal 1900 elements (see Fig.2, Tab.2 and Fig.5).

Table 5. Apparent density and water absorption of the samples of P0, P6 and P36.
Sample Apparent density, g/cm 3  Water absorption, %

______ 1400C0/2h 1500C0 /2h 1400C0 /2h. 1500C0 /2h
PO 5.66±0.02 5.48±0.01 0.14±0.03 0.22±0.03
P6 4.97±0.01 5.47±0.01 0.78±0.04 0.03±0.03

P36 2.35±0.03 4.08±0.01 14.08±0.07 5.90±0.06

Table 6. Hardness, HV, and fracture toughness, Kic, of PO and P36 (F=49.05N, *F=98. IN).
Sample 1HV, GPa Kjc, MPam0 .5

_______ 1 400C0/2h 1 500C0 /2h 1 400C0 /2h. I 500C0 /2h
P0 11.78±0.59 10.43 ±0.61 3.42±0.09 3.22±0.30
P6 8.02±0.55 10.35±0.79 7.06±0.68 4.49±2.19
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The additive of carbon affected density and mechanical properties of the sintered
materials as is shown in Table 5 and 6. Too high concentration of C in P36 caused
degradation of the material due to gaseous products of the reaction of the TiC formation.
However, the sample with lower additive of C (P6) sintered at 1400'C showed a great increase
in fracture toughness. This can be attributed to the reduced grain size in P6 when compared
with P0 (Fig.7), occurrence of the transformable tetragonal phase and some amount of
porosity observed.

".@k ,X J," 000 1 "% 0"08

a b
Fig.7. SEM microphotographs of the samples sintered at 1400'C for 2h: a) P0 and b) P6.

TEM observations revealed the TiC inclusions of -200nm in size in the sample of P6
sintered at 14000C for 2h.

CONCLUSIONS
The presented work shows that TiC inclusions can be formed in situ in zirconia solid

solutions which contained TiO 2 as a stabiliser. The carbothermal reduction of titania and TiC
formation leads to the destabilisation of the zirconia solid solution and transformation of the
deoxidised cubic phase to tetragonal or even monoclinic one. This can activate the toughening
mechanism. The decreased titania concentration reduces the grain growth and also can lead to
improved properties. Gaseous products of the formation of titanium carbide suppress
densification of the materials. The phase composition of the materials depends on carbon
concentration, heating temperature and CO concentration in an atmosphere.
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CLOSED-FORM ANALYSIS
OF THE THICKNESS EFFECT

OF REGULAR HONEYCOMB CORE MATERIAL
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Paul-Bonatz-Str. 9-11, D-57068 Siegen, Germany

INTRODUCTION

Within sandwich structures for lightweight applications the use of regular honeycomb
cores is very common [1]-[4]. Considering the structural behaviour of a sandwich the
effect of the core is not only to maintain the distance between the faceskins, but it
also contributes to the overall inplane stiffness of the entire sandwich [5].

Due to the coupling of the core displacements with those of the sandwich face
sheets the stiffness contribution of the core is not simply proportional to its total
thickness, as could be expected. As a consequence the effective core stiffness gets a
nonlinear function of the total core thickness. This outcome is the well-observable
so-called "core thickness effect" [7].

The objective of the present work is to give a closed-form description of the effec-
tive inplane core stiffnesses including the thickness effect.

CONSIDERED HONEYCOMB CORE STRUCTURE

The most common cellular honeycomb structure is periodically composed of perfectly
regular hexagonal cells as it is shown in fig. 1. Within each hexagonal cell all six edges

I F3.
Figure 1: Regular hexagonal honeycomb

are of the same length 1 and all corner angles are equal to i20'. Correspondingly,
the diameter of the hexagonal cells (distance of two opposite parallel edges) is lv'a.
Furtheron, the core structure is characterized by the cell wall thicknesses t and 2t for
the diagonal and vertical cell walls, respectively (due to the fabrication process by an
expansion method [2]), the core thickness h, and, of course, by the elastic properties
of the employed cell wall material.
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Figure 2: Representative unit cell

For the derivation of the effective overall core properties under a macroscopically
homogeneous loading it is most convenient to follow the concept of a representative
unit cell [5]. For the purposes here it is sufficient to consider the representative
rectangular unit cell shown in fig. 2.

CLOSED-FORM APPROACH TO THE THICKNESS EFFECT

For the derivation of effective core stiffnesses the case is to be considered that the
core is submitted to macroscopically homogeneous strains 6. and/or co. On unit cell
level the macroscopic strains go along with a corresponding displacement field within
the cell walls.

For an appropriate displacement representation the local coordinates Th, 772, and
are introduced for the vertical and diagonal cell walls as it is indicated in fig. 3.

For a clear distinction of local strains and displacements the vertical cell walls are

Figure 3: Employed coordinates
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labelled by the index "1" and the diagonal cell wall by the index "2", respectively.
Local strains and displacements are labelled in the same way.

In really many practical honeycomb cores the cell walls are rather thin. Then it is
justified to assume that the cell walls predominantly transfer forces through membrane
strains and that bending forces in the cell walls can be neglected. Correspondingly,
the local displacements v1 and v' in ql- and rl2-direction respectively play the most
important role. As a kind of compatibility condition along the cell wall interface
rli = 0 or, equivalently, r72 = 1/2 due to the given geometrical situation the relation

v1 = 2v2  (1)

has to be met.
The cell wall displacements can be described in a relatively easy way for two

limiting cases, namely directly along the sandwich face skins and, on the other hand,
sufficiently far away from the face skins within the core.

Assuming that the face skin laminate is sufficiently stiff the homogeneous face
skin strains enforce the following cell wall deflections:V=60 + h

v Y 4).(.±+j for (=±- (2)2(2V 2 =(160 +3ý0 .22

On the other hand, sufficiently far away from the face skins (for a sufficiently large
total core thickness) force equilibrium between the respective cell walls leads to the
following deflections:

1 30 30 3 3V 0)71 + 20x 56 0)1

V = 2 (3 + 3 O)2 (3)

On the background of the limiting cases (2) and (3) for the real case of a sandwich
with a core of finite thickness h the following displacement representation is chosen
as an approximation:

el~/I()= e°(rm-+ 3)-+ f(C)1 lo --10ey)?7 + +3 0 7f(71+)(_30 7
(71,) 6= (-qo + PO + E + E)

cosh (A() (4)
with f(() = 1 - cosh (Ah/2)

Herein, the function f(C) has been defined in such a way that it vanishes at the face
skin interfaces ( = ±h/2 and, on the other hand, becomes maximal in the thickness
center C = 0. The quantity A is a free parameter that is still to be adjusted in such
a way that the given approximation gets as good as possible. For this purpose the
principle of minimum internal potential energy can be applied.

From the displacement representation (4) the accompanying strain components eq
and -y,, can be derived in a straightforward manner. Then in a subsequent step the
strain energy can be calculated as

U f J E '2 dV +- J 'G 20dV ,(5)
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where E and G denote Young's modulus and the corresponding shear modulus and
the integration is performed over the entire volume of the involved cell walls. Some
tedious but straightforward calculation finally leads to

U =
450 ° 0 0y45o

I h 45e02 - 210eO6. + 245,
+- tanh (A-) 1600

1 (3Fo - 7,o)2]

+ lh cosh2 (A h) 640 J
___ -I (37°O - )

+2Gt 213A tanh (Ah) -_ 3hA2h l 7 (6)

When the strain energy U is divided by the volume of the considered representative
unit cell the specific strain energy U* per volume is obtained as

U* = U (7)

Eventually, the effective core material stiffnesses

a2U* a2U* 02U*C. - -o Cy,,, Qý; C, =y~ (8)
Me2 02ae

02  60

can be calculated as

C. v3- E'1[ +4'tanh(A )+

5 ~E1+ 4 Ah 2A.) 8 cosh 2(A2)

+ GtA/[2tanh(A-)-A h ]

2 160V31 h
CY v3 E'[1 - tanh (A h) _ 2

5E- I 1 12Ah 24cosh2 (Ah)
7 Gt/[2 tanh (A' - A 19

48 0 -hhcosh2 2 (9)
ytE' [1 49 h 49
5C [1 ± 36Ah 2 72cosh 2 (A2)

+ 49 Gti [ htanh(Ah 1 1

1440/3 h -2 cosh' (A2)

These effective stiffnesses interrelate the homogeneized unit cell stresses < Ox >,
< UV > (total forces per cross-sectional area A) with the macroscopic strains E0, 60

in the following way:

< Gy > CXY Cyy 6 (10)

So far, there is still one degree of freedom within the derived results, namely the
introduced parameter A. Knowing that the real displacements minimize the resultant
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total strain energy the introduced quantity A is determined by minimizing the strain

energy of the considered representative unit cell. For the actual minimization a little

FORTRAN programme has been implemented.

RESULTS AND THEIR COMPARISON WITH FINITE ELEMENT ANALYSES

In order to validate the derived closed-form results (9) some accompanying finite ele-

ment analyses have been performed for the case of an aluminum core with a Young's

modulus of E = 72200.MPa, the geometric dimensions 1 = 4mm and t = 0.05mm

and a set of different core thickness values h. To this end the finite element code

ABAQUS [6] has been employed, using 4-node shell elements of type S4R. A finite

element mesh of the representative unit cell is shown in fig. 4. As "loading" on the

zI

Figure 4: Representative unit cell finite element mesh

cell surfaces and edges those displacements have been prescribed that correspond to

the macroscopically homogeneous strain states 60, e. Then the effective core cell
stiffnesses can be identified either through the resultant reaction forces or through
the respective total strain energy.

Fig. 5 shows the results for the effective core stiffnesses C., CVY, CXY as func-

tions of the total core thickness h within the range h = 0... 10mm according to the

closed-form relations (9) and according to the performed finite element analyses. In

this representation the solid line curves are the closed-form predictions whereas the
isolated markers mean the obtained finite element results.

Obviously, the numerical finite element results validate the corresponding closed-
form predictions - there is a satisfactory agreement between the respective results.

In comparison to the finite element modeling the presented closed-form approach
is much more effective in regard of the involved numerical effort. With this advan-
tage it is very useful for practical engineering applications and it enables an easier

investigation of parameter sensitivities.
Considering the actual dependence of the effective core stiffnesses on the thickness

h it has to be stated that the effective stiffness Cyy shows the most marked thickness
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Figure 5: Effective core stiffnesses C,, Cyy, C,, as functions of the core thickness h

effect. For a very thin core thickness, h -+ 0, the amount of Cy is about twice as
large as for the case of a large core thickness, h -4 oo. The effective core stiffness Cy
also shows a marked thickness effect but with the opposite tendency. Eventually, the
effective core stiffness C., shows the smallest thickness effect. For h -+ 0 the stiffness
increase is just in the order of about 30 percent. Of course, it is also important to
have quantified this less pronounced thickness effect.

Another important aspect of the effective core stiffnesses is the symmetry of the
properties. It is well-known that for h -- co a hexagonal honeycomb core in regard of
its inplane properties is isotropic (5]. In connection with the thickness effect, however,
this property gets lost, as can be seen from the results in fig. 6. For the limiting case
h -4 0 a marked degree of anisotropy has to be 4ated because Cy gets almost twice
as large as C,,.
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INTRODUCTION

Analysis of exact three-dimensional solutions of particular problems of elastic
deformation sandwich plates [1,2] shows the principal difference of stress-strained state
(SSS) under symmetric and oblique-symmetric loadings of front surfaces that cause
unflexural and flexural deformation. Therefore, while constructing approximate SSS
models it is necessary to introduce the approximations of SSS along the transverse
coordinate for symmetric components of loadings that would add to the
approximations of flexural models [3,4 and others]. Under unflexural deformation
taking into consideration of cross compression is necessary, because under symmetric
cross loading the purely shear models [3] lead to simply-zero solution. Specified
continual models of deformation of layer plates, where the general order of
differentiation of solution equations does not depend on the quantity of layers are given
below.

PROBLEM STATEMENT
SSS of rectangular plate having thickness h is being modelled in orthogonal

system of co-ordinates xa ( a=1,3; x3=z ). Orthotropic axes coincide with axes x, in
rigidly connected orthotropic layers of arbitrary h•k) (k=-,-n) thickness. Axes z is
orthogonal to facial surfaces of the plate z=ao, z=a,,. Let's introduce the components of
vectors of mechanic loading YaO, Y.. in the directions of axes xa and temperature To, T,
on the facial surfaces as a sum of symmetric pa, p. Tp and oblique-symmetric qa,
q,, Tqo, Tqn components (concerning the middle surface z=am ).

To postulate "rational" hypotheses for stress distributions across the thicness of
transverse shear ao3(k) (i=J,2) and cross compression o 3(k) while modelling is the most
rational. In these hypotheses, the approximations for the transverse co-ordinate z are
given in such way thet the static conditions of contact of layers and the conditions on
the facial surfaces are satisfied. Then it is possible to define approximately hypothetical
components uj() of the displacement vector in the layer k from the equations [5]:

(k) = V + a(" a (`) dz)

uskd= , a(s) ,d(+f )dz. ij-l,2
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where v1(x1j) -unknown functions of tangential, and Vs(x) -normal displacements on

voluntary surfaces z=Sa; aapry) and A are coefficients of matrixes of pliability and

rigidness of Hooke's law in axes xa.

Here and further the particular derivatives are substituted by lower indexes after a

comma. Summarizing of repeated lower indexes is introduced; at that ij=1,2; 0c=1,3.
The sum of integrals in the quantity of z from the non-continuous function is marked
as one integral of the given function [3-5]. The upper index in brackets is the number
of the layer.

Let's introduce the hypotheses for the stresses a,,sk) in the symmetric structure
looking like:
a) for oblique-symmetric normal loading q3 =0,5(Y30 +Y,:

k)- (Z)Th+ f(t " (Z4)%fl82 , () = F/'I (zk ) q3 + Frk) (Z5) Y2; (2)

b) for symmetric normal loading P3n= -P30 = Y3n- q3:
Cris () = f3 1k) (zS)fl Bs; C733s(k) = Psn + Fs3) (Z4) Y3 (3)

c) for symmetric tangential loadingpi = 0,5(Yjo + Yin) :

(70() = fPk (Z) P i+ fs) (z3)/8, 3 ; U'33(k) = F4(k) ( Y) y4+ F3kg (z4) 3z; (4)

d) for oblique-symmetric tangential loading qjn= - qjo= Yin- p:
sai3() = q in + f i I (zk)fl (Z ; I U3s () = F5 0) (zs3) r"5. (5)

In brackets under functions f jk) (z) and F•() (z) the maximum stage of

approximating grade polinom at z, and /3 ia(x) and v,(x) are unknown functions of
transverse shear and compression.

In unsymmetric structure the unflexural and flexural deformations for tangential
loading are interconnected. That is why the hypotheses (4) and (5) should not be
separated. Symmetric tangential loading causes an essential flexural deformation in a
non-symmetric package of layers.
Hypotheses (2)-(5) and the contents of the functionsfik) (z), F/(k) (z) got as specifying

of the next simpliest starting hypotheses for oak) : from the affect of loading q3 - or3

= IJ(X) ; ('3s =fo q3; fromp3 n, P30 -03 = 0; q733 =psn; from qin, qo - qs3 = qjn; ;a33
= 0 ; from the affectpi -
C 3 = foA P; ja 33= FoTo(Xj) , where fo 2(z - ao)/h -1, Fo = (z - ao)[(z - ao)/h - 1].

In the procedure of the specifying the stresses oa, were filled into (1) and got
ucPk) - into Cauchy's correlations and the law of Hooke. Further the specified

expressions oqj'3 were defined from the equations of steadiness oa,acoby means of
integrating (mind, as for two beams with elastic properties of the matter in the direction

of axes xi ), and with Os3() were integrated with the new unknown functions 8, , y,
(like in [4]) - derivatives from loading and from functions va , and also all static
conditions were satisfied on the in-plane surfaces of the layers and of the plate. To
decrease the quantity of approximating functions the hypothesis about the similarity of
different degree functions f is() (z) , F/k) (z) with the same highest degree z is

208



introduced, if during the transition to the homogeneous plate these functions are
becoming linearly dependent.

As a result, the functionsfiV) , F1,() in expressions (2)-(5) look like:
(,k) •r) ( ,id

f..)=fAiZ)(z -( )dz; k,l=ln;r=1 ,k;s=1,r; p =1,l; (6)

f •,0--" f( f, sa 3dz 2  $o--) ji(f~ x? £ Z

f (k) = 0 (k ,(n) _.(a.)k); f(k) = 2 ,(k)-1;

F(k) = 2 7gk) / 7 ) (an)-; F(k) =0,5(F(k) + 1),(an ) -17k)YI = 2171 1 (a)' 2a 0, ; a
F3(k) (k) ;F4k) =f(r)dZf( dz a)h

Fk) ( lk) _ r(n) (a,)(- ao) / h,

where

-ý f%4A')zdz/ IA~ ; ='1  - Ai? dz fA(dz;

• (z) = f (r) +f2 )dz; O(k) (k) +0

J7 k)(z) = f a(;r)dz; pf1(z - fd = 1;

o 0o

On the facial surfaces zMa and zan functions f fc) , F) (s2,5) have zero

meaning and the remaining ones are equal to 1 and -1. Functionsfaj (k, lk)were used

in [3-5 and others], while f1 2 (k) are introduced in [3] and the remaining - are proposed

here. Let's mark that introduced approximations f,. (k), FI'k) coincide in quality with the
given in [1] exact solutions for Oa (

Functions ? ,2(xr ) and y2x) can be neglected. However, in the places of the

localization of loading and also under relationship between coefficients of pliability of
the material a tar te inthe ayerorin the different layers of more then 1q [3] they

specify SSS essentially.
Under the arbitrary directed vector of loading YaO, Ya, the hypotheses will look

like:

--3 fia'= , +(i) - + )Yo+,(k))Yn ; a = 1,3; i=1,2" (7)
(k) (k). + -5(k) _())y3 0 +0,5(F 1 (k) + 1)Y3n; 2-o'33 = FP vP + 0,5(/•-1I3 p = 2,5

They contain six unknown functions of the transverse shear fli• and four
unknown functions of the cross compression ys. In the linear elastic problem instead
of (7) it is possible to consider 4 simplier problems (2)-(5) under symmetric structure
and 3 - under any structure of the package of layers.

In case of stationary facial thermal affect with the known temperature To, T, on
the facial surfaces z=ao, z=an the distribution of the temperature along the thickness of
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the plate can be introduced as a piece-linear law [6] with approximating function VI'2I.
Using (2),(3) and dividing the temperature into constant in thickness symmetric
Tp(z)=(To+rT)/2=tp and obliquesymmetric Tq(z)=(21V1A)-l)tq, , tqn=(TnT-o)/2
components, let's take hypotheses in the form:

(k) = S (k)( +S~)(Z2 )tq+f k 033 = F(,k)yp ;p= 2,5" (8)

where the division into unflexural (fl u=Y 2=7 4 =0 under tqn =0 ) and flexural
(fA3=r3 =0 under tq, =0 ) deformation is possible only in the case of symmetry of the
structure of the plate in its thickness.

Functions S uY') look like:
Si~k) = ,ýar)dZ - xf A 5-ýdz; Y11k)-£ r)ldIf(lydzo i j 0 010

SJ = £o A,?aýr)a (2•)• -)dz-(2t-"/h)f Ae9)(z- j)dz,
"Julij A' i r. I I

where cj() are coefficients of the temperature widening of the layer in the directions xj,
and aj - average in the thickness of the plate; A3() is the coefficient of thermal
conductivites in the direction of axes z.

The values of aj are defined from two equations S 0(")(a)=O and then V/ from
Sj2()(ad) =0. They insure self-balance in the thickness of transverse shear stresses in the
"free" plate with the linear depedence of T(z)from z.

Let's introduce the kinematic model (1) corresponding to hypotheses (2)-(5) or
(7), (8) in a summarized look (by analogy with [4,5]):
u3N = v3+ Vf3(k) rp3 + U3,"

ui = v i- V*o')(Z) v3, irp'i -Viak) (Z) /iJa + U,, (9)
where Ua are addings, containing components of facial loadings, temperatures and their
derivatives.

The expressions for the SSS components may be obtained by filling (9) into the
Cauchy's correlation and then into the law of Hooke. This leads to the unfulfilling in
a3 a'k) of static conditions on the facial surfaces of layers , which in the problems of the
curve has a little influence on the accuracy of computation. However, the definition
a 33(k) from the law of Hooke and not from the hypothes, allows to get a symmetric
matrix of coefficients in the solutable system of differential equations of the linear
elastic problem:
Lv9)+Lq, (rp+Laa (A)=Z 2 ; =Z,1,13. (10)

Here L=, (...) are differential operators of a not higher that the fourth level, and
Z, are expressions for loading and temperature. System (10) with the correspondent
boundary conditions is gotten according to the methodics [3-6] from the variational
equation of Lagrange. The general order of differentiation (10) does not depend on the
quantity of layers (continual model), and the part of each of the functions vi , flia in it
makes 2, and functions v3 , r• - 4. That is why for each of the hypotheses separately (2)-
(5) the general order of differentiation (10) will be given below.

Numerous solutions, .obtained according to the proposed models for extreme
meanings of stresses oja#= l0Oa)/go and of displacement ub'=10uf') G12()/(go h) (in
table meanings marked*) practically coincide for a square blxb2xh, b./h=3 two-layer
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plate under boundary Navier-type with the exact three-dimensional solutions obtained
according to methodics [1] (kindly given to the author by A.V.Marchuc). Loadings:

[q 3;P3s] =gosin(rx1/b1 ) sin(=x2/b2) ; [qln+ q2n; Pl+ P2] =gocos(=x/b) sin(=rtxb), ij.
Characteristics of transversal-isotropic layers: ha') =2 h/3; h(2) = h/3; G12 (k) =10 MPa;
Ej () =2,6 G12 ); E3 () =0,1 E ); E (2) =05 Ej (; G 3 (1) =0,5 G12 ); G 3 2)-=0,2G
v12/)=v2

1(k= vzi=0,3; vi(=0,03; vj-J2)=0,15,. ik=,2.

z/h Ya u3s U"13' U33' a]11# U12#

1 26,02 -10,00 0 46,71 -25,15
*25,91 -10,00 0,02 46,80 -25,20

5/6 26,61 -0,90 1,72 23,10 -12,04
*26,53 -0,88 1,69 23,14 -12,06

2/3 26,15 2,94 1,23 6,75 -3,35
q* *26,08 2,91 1,20 6,80 -3,35

1/3 26,13 2,78 -1,17 -7,47 3,75
"*26,06 2,79 -1,19 -7,43 3,76

0 24,61 -10,00 0,00 -52,70 28,38
*24,56 -10,00 0,01 -52,96 28,44

1 67,25 0,00 10,00 61,18 -30,64
*66,94 0,00 9,96 60,86 -29,89

5/6 62,93 10,74 7,84 24,09 -11,16
*62,65 10,81 7,83 23,97 -10,92

2/3 59,65 13,22 3,45 -3,00 2,41
q3 *59,30 13,19 3,45 -2,89 2,35

1/3 59,55 10,93 -5,09 -8,06 3,17
*59,20 10,87 -5,07 -7,96 3,06

0 59,98 0,00 -10,00 -45,86 22,39
*59,61 0,00 -10,02 -45,62 22,01

1 4,61 -10,00 0 -6,96 1,44
*4,52 -10,00 0,03 -7,05 1,39

5/6 4,51 -4,58 2,45 -1,20 -1,63
*4,46 -4,50 2,39 -1,22 -1,68

2/3 3,01 -1,49 3,47 0,28 -2,39
A *2,98 -1,42 3,40 0,19 -2,41

1/3 2,60 1,72 3,31 -0,95 -1,75
*2,60 1,77 3,38 -1,03 -1,75

0 3,27 10,00 0,00 -4,22 -0,04
*3,24 10,00 0,00 -4,33 0,02

1 -12,30 0,000 -10,00 -6,96 1,44
*-12,22 0,000 -9,98 -6,84 1,44

5/6 -6,06 -0,587 -9,85 -1,20 -1,62
*-6,04 -0,596 -9,88 -1,14 -1,63

2/3 0,19 -0,232 -9,70 0,28 -2,39
P3 *0,10 -0,244 -9,76 0,22 -2,41

1/3 2,65 0,358 -9,78 -0,95 -1,75
*2,62 0,369 -9,80 -1,02 -1,80

0 5,03 0,000 -10,00 -4,22 -0,04
*4,99 0,000 -9,98 -4,36 -0,12

The influence in symmetric components rises with the decrese of the relative
transversal rigidness of the layer [1,2].
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CONCLUSIONS
While building continual models of the deformation of layer plates, the specificiti of

unflexural and flexural deformation from symmetric and oblique-symmetric
components of bilateral loadings and temperature is considered. This made it possible
to specify the known models.

The author thenks professor V.G.Piskunov and doctor A.V.Marchuc for
assistance in the preparation of the report.
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INTRODUCTION

Failure analysis of plated and shell sandwich structures having FRP faces is a complex
problem especially due to variety of global (overall) and local instabilities encountered in
such constructions in practice. It is known that the mechanical characterisation of FRP
faced sandwich construction is generally orthotropic. In addition, due to the low core
shear moduli (in-plane and transverse shear) the evaluation of theoretical failure loads is
strongly dependent on the used approximations understood in the sense of 2-D and (or)
3-D formulations of plate or shell theories.
A considerable body of literature exists on the modelling, analysis and design of
sandwich plates and shells. Lists and reviews of the contributions are given in the review
papers [1,2,3]. The cited survey papers demonstrate the variety of trends in modelling
sandwich structures as well as point out the diversity of the recent progress in this area.

Sandwich construction analysed herein consists of two faces made of multilayered FRP
(fibre reinforced plastic) and separated by an isotropic core - Fig. 1.

tf

tc t

- tf

Figure 1. Geometry of sandwich structures having multilayered composite face sheets.

The objectives of the present work are following: (i) to discuss the effects of used 2-D
formulations (kinematical hypotheses) on values of global buckling loads and on the
prediction of natural frequencies and (ii) to model stress distributions and concentrations
with the use of 3-D FE approach. The attention is mainly focused on one particular
construction,i.e. rectangular plates subjected to axial compression. The theoretical
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analysis have been conducted for simply supported sandwich plates in order to be in an
agreement with the experiments. Therefore, the overall buckling loads have been
determined with the use of the classical Rayleigh-Ritz method. In addition the assumed
type of boundary conditions allows us to model easily the local failure modes connected
with the local instabilities.

2-D FORMULATIONS OF GOVERNING EQUATIONS

For sandwich structures the formulations of governing equations are based on the variety
of assumptions dealing mainly with: (1) kinematical hypotheses,i.e. the form of series
representations of 3-D displacements with respect to the thickness z coordinate, (2) the
assumed form of geometrical relations, (3) statical hypotheses and (4) the assumed
material models of the faces and (or) particularly of the sandwich core (e.g.corrugated).
The first part of our investigations is devoted to the discussion of kinematical
assumptions effects on overall buckling and natural frequencies. In particular, we adopt
herein three different sandwich plate theories (so-called global laminatewise
formulation), based on : a) the HSDT theory suggested by Reddy, b) the FSDT and c)
the Love-Kirchhoff classical theory. The normal deflection w is the same for the core
and composite faces. In addition, let the core material sustains only transverse shear
stresses.

For simply-supported boundary conditions with the use of the standard procedures, the
Hamiltonian principle (for free vibrations problems) and the Lagrangian principle (overall
buckling), finally one can find the required solutions in the closed analytical form. For
higher ordered plate theories the computations are associated with a great number of
algebraic relations and transformations. To simplify it one can apply the symbolic
packages, e.g. Maple orMathematica.

FREE VIBRATIONS AND OVERALL BUCKLING (2-D)

The correctness of the evaluated relations have been verified with the use of the NISA II
finite element program [4]. The plate have been discretized with the use of 64 eight
noded quadrilateral sandwich elements (NKTP 33). The results of analytical and
numerical calculations are shown in Tables 1 and 2.

Eigenmodes
(m,n) L-K FSDT HSDT NISA H
(1,0) 11.76 8.77 8.05 7.60
(1,1) 29.85 15.80 14.13 13.95
(2,0) 47.05 22.98 18.23 17.79

(1,2) or (2,1) 69.35 26.88 21.84 21.09

Table 1. Comparison of dimensionless natural frequencies [n = (0ob 2/t)( p/E2)0 '5] for
sandwich plates (a/b = 1, t/b = 0.1, tc/t = 0.8, p / pf = 0.8, 0 = 45 deg).
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Computations have been carried out for sandwiches having graphite/epoxy resin faces
and isotropic cores. The mechanical properties of materials used are given below:

Faces:
El = 125.79 GPa, E2 =13.03 GPa, G12 = 6.41 GPa, G13= G32 = 3.21 GPa, V12 = 1/3,
p = 2800 kg/mr3

Core: G13 = G32 = 1.603 GPa

As it may be seen the agreement of pure numerical results and analytical ones seems to
be very good and increases as the order of the applied theory increases. However, it
should be noticed that the good results have been obtained with the use of the global
(laminatewise) theory. This is possible since we intend to describe an overall behaviour
of the structures. Local effects understood in the sense of local instabilities require more
precisely defined kinematical effects and it leads to the increase of the number of
independent kinematical variables in 2-D approach or to 3-D analysis. Let us note that
the discrepancy between HSDT and FSDT is rather small so that from practical point of
view FSDT may be used even for considered moderately thick sandwich plates.
With the use of the closed analytical form of final relations for natural frequencies or
buckling loads it is possible to solve optimization problems. Some results in that area are
presented by Muc,Zuchara [5].

Eigenmodes
(m,n) L-K FSDT HSDT NISA U
(1,0) 60.17 64.11 69.04 71.15
(1,1) 72.81 78.03 79.28 85.14
(2,0) 91.43 95.4 98.78 103.6

(1,2)or(2,1) 108.32 117.11 121.32 128.4

Table 2. Comparison of dimensionless buckling load factor %= N.1 , / N, for
sandwich plates (a/b = 1, t/b = 0.1, t/t = 0.8, pC / pf = 0.8, 0 =45 deg).

Numerical eigenvalue extraction methods for buckling and free vibration problems are
identical. However,the differences of the eigenvalues determined with the use of various
methods not exceeded 1%.

FE MODELLING OF FAILURE

In addition to classical overall (global) buckling sandwich constructions can undergo
several local failure modes commonly associated with local buckling instabilities. In order
to model them in a consistent manner it is necessary to take into account not only
transverse shear stress components but also the normal stress component denoted herein
as c;z (a33). For plated or shell structures it is possible to introduce it as additional
parameter (kinematical or statical variable) or to model the problem in a pure numerical
way with the use of FE. Due to the complexity of the problem for arbitrary loading and
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boundary conditions our attention is mainly focused on FE modelling of sandwich
structures in 3-D approach. Similarly as previously we consider sandwich plate with FRP
faces subjected to in-plane compressive loads. To compare the results various types of
FE have been used:

A. 3-D solid hexahedron (brick) 20 nodes elements (NKTP 4)- they possess extra shape
functions enable the element to model pure bending problems exactly.

B. 3-D solid hexahedron (brick) 20 nodes laminated composite elements (NKTP 7) -
the elements are suited for modelling various stacking sequences of FRP faces and
have all capabilities of the previous elements (model A).

C. The interface between FRP faces and the core is described by 3-D gap-friction
elements (NKTP 50) having high stiffhess in order to determine more exactly the
mechanical characteristics of bonding - the FRP faces and core deformations are
discretized with the use of 3-D (NKTP 4) elements.

D. The same as previously but NKTP 4 elements have been replaced by NKTP 7
elements.

The results of the comparative studies are presented in Table 3 and in Fig.2. A quarter of
a simply supported plated have been divided in the z - direction into 5 layers having the
identical thicknesses. Each layer is divided into 100 elements (equal division in x and y
directions). Two external layers have characterized the FRP faces behaviour, whereas 3
internal - the sandwich core. The material and geometrical parameters of the plate are
identical as those discussed in the previous section. There is only one difference in the
thickness ratio since now tc/t = 0.6.

Maximal stresses Model A Model B Model C Model D
in [MPa]

O,, 0.061 0.059 0.0505 0.0495
On 0.032 0.03 0.024 0.024
lazy 0.034 0.0305 0.0243 0.024
__y_ 0.31 0.295 0.277 0.265

Table 3. Comparison of maximal (absolute) values of stress tensor components - the
faces are made of FRP oriented at 90 deg.

As it may be noticed the highest difference between models occurs for geometrically
nonlinear contact elements (C and D) and linear (A and B). There is no visible
differences between solid (classical) elements and composite elements - e.g. the results
for models A and B. However, it is worth to note a great influence of normal and
transverse shear stresses - their magnitudes are of the same order as the magnitudes of
the stresses in the direction y of the compressive external forces having the intensity 0.05
[MI2a].
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The highest compression is always observed in the interface region and may result in the
local loss of stability of faces or of the core. Therefore, for sandwich structures all failure
criteria should take into account all 3-D components of the stress tensor.
Figure 2 gives also the indication on the effects of orthotropy. The increase of the faces
strength in the compression direction reduces the maximal values of the normal stresses.
For isotropic structures the normal shear stress effects may be completely neglected.
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STRESS CONCENTRATION IN BENDING OF SANDWICH

PANELS UNDER POINT FORCES

V. POLYAKOV
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23 Aizkraukles St., LV-1006, Riga, Latvia

INTRODUCTION

The growing use of sandwich and laminated plates requires a theoretical based prediction
of the mechanical behaviour of such structural elements. Starting with a pioneering papers
of E. Reissner, W. Allen there are developed a great number of theories for engineering
calculations. The classification of theories and the discussion some of them in detail was
given in [1].The expanding range of investigations is motivated by the need for the
consideration of physical features in behavior of structural sandwich elements under
different loading conditions, thermal and dynamic loads included. Integral characteristics
of a structure at the loss of stability and the fundamental vibrations have been studied first.
Qualities of the local behavior of a layered model were examined in the general context of
a stability problem in [2]. Nevertheless, the local stress fields in the vicinity of point forces
and/or fixing points of a sandwich still remain not clearly understood. The general method
of calculation of local characteristics based on the solutions in boundary functions for the
semi-infinite layered models was given in [3]. The solution of boundary-value problem for
the finite length panel [4] was proposed by the method incommensurably more complex
relative to a design procedure needed in an engineering practice. The guideline in
selection of the particular version of theory is the opportunity to give the clear-cut
physical interpretation of all final and intermediate results of its application and the scope
for going from a complex structural geometry to that ordinary (e.g. from layered structure
to that uniform).

PROBLEM STATEMENT

For the purpose to derive the analytical solution version, considering a local load factor in
the work the discrete model is used, which consider the Kirchhoff-Love kinematics of
deformation of face layers and the transversal compression combined with shear of a
midlayer. Under these assumptions the mechanism of traction transfer between the layers,
based on energy estimates, is not considerably simplified, however it can be analyzed
more easily than with the use of numerical solutions.
Cylindrical bending by point forces, each of them being invariable along the panel width,
is considered using the refined applied method [5]. The method is based on the analytical
solution of the variational problem for sandwich plates.
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Fig. 1 Point-force loading chart of a sandwich panel

In the present statement the longitudinal and transverse displacements of the midplane of
the outer sandwich layers are representative of the four degrees of displacement freedom
of the model. The set of the Euler equations of the variational problem 8V = 0 for the
functional of the total energy V, obtained for the independent displacements has the
following form

d 2u, -_ u 1 (dw ._ dw 2 7
+ U 2 -U, + -(-+ 1=

n,X L 2\dý dýI
i = 1, 2 (1)

d4w, 6 d3u, T12k (w2 -
d..tzz2X-2 n,Xi q

where assumed that if i = 1 then p, =pt, ;r = nl = 1 and the upper sign is taken, but if
i = 2 then alongside with the lower sign the parameters P 2 At/Jf,0 I 2 =', n2 = nx
are taken. In Eqs. (1) the following nondimensional variable and parameters are
introduced:

S x6P (1- V2) E (2)(1 - v 2)

: q o = , x =

hi + ho E()b(hl+ho),u/3  E('x)(1) V2)

_h, h2  h 2+ ho (2)
hi+ h 0  hi+ ho

I.- Ez 2 G- Vmz nz
n= - (1-v), (( k k2

The displacements wi and u, in Eqs. (1) are also dimensionless (related to ho + h1) and Ez,
Gx. are respectively the shear and compression elastic moduli of the midlayer (core). For
the point loading the right-hand sides of Eqs. (1) are given in terms of the Dirac function
8(ý) and for the three-point bending, see Fig. 1 a, they are:

ql = 2q0.5(ý, q2 =- ---- 8 3 •1 (3)

nxz
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In the case of a uniform load, see Fig. 2 a, equal to P/2bl (b - panel width) the function
3(4) in the relation (3) when i = 1 is replaced with the unit function divided by 2ý1 .
Boundary conditions at the free panel end ý = ý, are the natural boundary conditions
determined upon variation of the total energy functional V:

o. 3k•
l n 3[w' +Zow• +2(u 2- uO)L],= 0n14u x'

w," (W,) = ui'(4 I)= 0,i 1,2 (4)

Due to the application of the Dirac 6( ) -function in light of the local nature of the load
under the action of point forces the Laplace integral transformation was used in solving the
set of equations of the twelfth order. The solution method allows us to pass to the limit in
the sought-for function instead of the calculation leading to the solution in the case of
expansions into the Fourier series. On the other hand the fundamental functions available
from this method give us a convenient way to define the kinematics characteristics at the
panel central section in terms of the unknown constants in the Cauchy problem. Laborious
calculations by this method were presented in [5]. In the work [6], that follows, the general
solution was obtained for bending of an asymmetric structure panel under uniform
piecewise continuous load.

a b

q q q

PIA 2 P12 -- 211 21

21-- 21

21

Fig. 2. Piecewise uniform load chart of a sandwich panel

Presented here are the cases of the loading of a symmetric structure panel
(E,(, =E2, ' h1 =h2 ) at the different disposition of point forces and piecewise constant
load, along with the cases of the limiting process in the physical and geometric parameters
of the sandwich model.

RESULTS AND DISCUSSION

An analysis of the solutions obtained in [5], [6] has shown, that all design characteristics
of the problem considered in the case of asymmetric sandwich structure are dependent on
both transverse rigidities of the core - in shear and compression, as their coupling occurs at
the stage of eigenvalues derivation of the boundary-value problem. However with a
symmetric sandwich structure the core transversal stresses in shear -?", and compression

Sare dependent respectively on nothing but relative physical param eters G ., / E.Ut and
E. / E•'. Because of this the symmetric parts of deflections and longitudinal
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displacements (w, - w2)/2 and (u1 + u2)/2 like their antisymmetric component (w1 + w2)12
and (41 - u2)/2 are liable to be of specific interest in the analysis of the results depending
on physical parameters of the model. As for the stresses and displacements of face layers,
they are the functions of both physical parameters mentioned, however we have succeeded
in separating the contribution of these parameters in the form of individual solution
summands.
The key characteristics, defining local deformation in bending of a sandwich panel are the

relative transverse compression of a central section Wa = [w, (0) - w2 (0)]/ qo and the
relative increment of a local curvature at the panel center Ka. For a symmetric structure
both of these parameters are dependent on merely the relative rigidity in compression
a = (6k 2 )114, whereas the relative values of face layer curvatures

w," (0) = - qo(• 1/2 + K,,) and w2"' (0) - - q0(,/2 - Ki) are also the functions of the
shear parameter a, = [2p 2 k, / (3 +p')]•"2 entering in the expression for a double value of
the mean curvature:

A -___ _ + sha, 4 -sh[al(•t -1)] (5)
1+-/3 / ' a, 1+f / 3)chal•

For the above-mentioned local parameters the following formulae can be found for the
case of loading by three point forces (Fig. 1 a):

A s "(a4j ) + s "[a(41 -1)] - 2Kws "'(a4) (6)
WA 4a 4 s,(a41 )

2s'(4,[s'a4-
Ica (7)

a s 2 (2a ) - s(2aj 1 )s "(2 a 1 )

where s (a4) = sh aý sin aý, and by a prime the operation of derivation with respect to
relative variable ý is designated. In the case of distributed bilateral pressure at the section
2l , that is less than 21, see Fig. 2 b, the formulae take the form:

^ =s s(aý,)-s'•[aQ(ý - ý,)] - ca4•:St(aý,) (8)
WA = 2a 4 1S '(a 4,)

sh act sh a(4j - ý1) sin a~, + sh aýj sin a4l sin a(ýj - I)

raa a 2a 1E(sh2a~, + sin 2a~1  (9)

The asymptotic formulae for -- oo (an infinite strip) in the above two cases are found as:

A 1 +e-a"'(cosaý, +sinai1) ^ 1 -e -a6 cosa41
Fig. 1 a: lim WA , Fig. 2b: lim wA =

ý, -->. 4a' €,--. W 2ao4'

lim KC' + e (cosa41 -sina4j) lim Ka = ea sina (10)
0, -- : 4a _,0 2 (10
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In the remaining cases of loading shown in Fig. 1 b, c and Fig. 2 a, c the corresponding
expressions of all design values can be found by the superposition of solutions for the two
already solved cases at j -- 0 or ý1 = ý1. It is notable that in the case of loading shown
in Fig. 2 c for a finite length panel ýj =- j we found oa (4) = const = q and Kca = 0.

The moment stresses in the face layers at ý = 0, depending on the relative parameter 7c,
contribute to an overload from three-point bending of the upper face layer. The load factor

A

of mere moment stresses increases infinitely at Ka • • /2, i.e., when the local bending of

the lower face layer is absent (w,"(0) =0 ). This situation is possible for a panel with

elastic characteristics of such materials as HEXCEL/Al with P., = 2h, / h = 1/6,
Exu' = 40 GPa, E.," = 0.31 GPa, Gxz = 0.138 GPa, see Fig. 3. Then the maximum
value of moment stresses in the central section at point reaching the outer surface of theA

upper face layer equals e m (0) =-Ex qo0 ( •/2 +ca) / [2(1 - v1 )], that differs from
A

the membrane stress ox"'b (0)=- Eq 0fl 2(g1 -_)/ [12(1 - y,)] approximately by two

times. The latter stress, defined as the average stress throughout the face layer thickness,
is comparable to the value of flexural stress c'•, determined according to the classical
Kirchhoff-Love hypotheses for the whole stack of layers [7].

21

2

0 O. 1.0

Fig. 3. Summands of relative curvature at the central section versus face layers fraction:

21/h = 5, curves 1, 2 - 2 at G, = 0 and at G,, = 0.138 GPa, 3 - K., at E., = 0.31 GPa.

Notice that for G., = 0 the doubled value of the relative mean curvature equals • = •,
while in the case of G, = oo (the bending of a uniform panel according to Kirchhoff-

A

Love) and for a thin filling interlayer, when uv -4 1, we have 4, = 41 / 4. This is also
evident from a comparison of the sum of two cylindrical rigidities of plates with a
cylindrical rigidity of one plate, which is twice as thick as each of them.

The transversal stresses ou, in the midlayer are identical both for bending combined with
slippage (G, = 0) and for bending without one. At the center of the panel loaded
according to three charts shown in Fig. 1 a, b, c the stresses U (0) are evaluated
respectively by the formulae:
o-z(0)=(-1/4)o'., o-•(0)= e -a'(cosoa~ + sin aoý)o', qý(0)=(-1/2))* (11)
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where z E=h- , and in the case Fig. 1 b the span length 1i is assumed

equal to 12. For the support section = the asymptotic formulae were deduced when

1 >» 1. In view of the charts Fig. 1 a, b the following estimates were found
respectively as Oz (1) -- - (1/ 8) a*, o(, ) = -(1 / 4) o.. The same condition was also
considered for the end section ý--• however the cases 41 • and •j -• have called
for careful analysis. Fundamental change in the transfer mechanism of pressure on a
midlayer occurs when the overhang of panel length beyond the supports is varied between
0 and (1/4)h, see Fig. 4, The distribution of oj(ý) with superposition of local effects
caused by point forces at the support and the center of a panel is shown for the moderate
panel length 21= 5h.

--'-, "0.)

Fig. 4 Transverse normal stress diagrams along the panel length

and against the extent of a span between the supports, (az = oa / ao, ao = P / bh)

At the end section ý=4, of the panel loaded as shown in Fig. I a, b, c the relative value of
stresses Oa(.a)/ o* can respectively be found as -(1/ 2)e-( - -'-cos a(4 -k),
- e •a'-'cos ca(4 -I) and - e-'ý, cos a4, . In the case of loading chart shown in

Fig. 2 b the normal transversal stress on the interval ý1 • g - may be calculated from
the following asymptotic formula

(= -(q 2)e-( -I)cos a(ý- 1 ) (12)
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In both cases the maximum positive value of transversal stress o-a at the end section =
occurs when ý, - ýj = 37/4a.

CONCLUSIONS

An analytical method devised for analysis of the sandwich panel in bending allows us to
obtain refined characteristics for the inplane and transverse normal stresses. Taking into
account the important aspects neglected in the classical theory the following conclusions
were made:
"* For the panel of symmetric structure with respect to middle plane was shown that the

local curvatures of layers and the bending stresses can be determined in terms of the
mean curvature depending from transverse shear and the additional curvature from
transverse compression. The final formulae allows us to analyze the stresses over the
whole range of shear rigidity of the midlayer including G., --4 0 (the case of slippage

over the interlayer surface).
"• The panel parts extending beyond the supports may be the cause of the advent of

positive value a. (1) at the free end, which by an order of magnitude less than the
value oa (0) at the panel center.

"* Local bending characteristics amplify the applied theory of layered plates by the
analytical description of local effects, and in the special cases of boundary conditions.
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Abstract-Design optimization of angle-ply plates is studied under

imprecisely specified dynamic loads using a non-probabilistic model. The

optimal design is obtained such that the maximum deflection of the plate is

minimized using the ply angles as design variables. In computing the

deflection the least favorable response of the laminate is determined

under uncertain dynamic loads.

INTRODUCTION
Dynamic loads acting on a structure are usually of an uncertain nature due to the

difficulty of predicting the magnitudes of such loads. It is important to determine

the response of a structure under uncertainty, and in particular its least favourable
response, to be able to assess the reliability of its performance. One approach in

evaluating the structural reliability is to use a probabilistic model. However, in
many cases complete probabilistic information may not be available.

In the present study, the deflection of an angle ply rectangular plate is minimized

under uncertain dynamic loads using the fibre orientations as the design variables.
A non-probabilistic approach is employed to determine the dynamic response of a

laminated plate under loads the precise forms of which are not known a priori.
The uncertain dynamic loads producing the least favourable response are computed

by convex modelling. This technique has been applied to a number of problems
and the reader is referred to [1-3] for extensive literature surveys. The application

of convex modelling to optimal design problems are given in Refs. [4-7].

The specific problem involves the computation of optimal ply angles a

symmetrically laminated angle-ply plate subject to uncertain excitations to
minimize its deflection. This in turn requires the computation of the least
favourable dynamic response of the plate to the uncertain excitation which may be
in the form of a forcing function and/or initial disturbances. The least favourable

response of the plate is determined by analyzing the convex sets associated with

the uncertainties in the input. 227



OPTIMAL DESIGN FORMULATION

We consider a simply supported rectangular laminate of length a, width b and
thickness I/ in the x, y, and z directions, respectively. The laminate is composed of

an even number of orthotropic layers with the fibers oriented alternatively at +0
and -0 degrees. The layer thicknesses and fiber orientations are symmetrically
placed with respect to the middle surface. Plates with these characteristics are

commonly known as symmetric angle-ply laminates. The laminate is subjected to
a forcing function F(x, y, t) = F(x, y) G(t) in the z direction and the initial

conditions

w0, y, 0) = (x, Y) Wt(x, Y, 0) = (x, y) (1)

where w = w(x, y, t) denotes the deflection in the z--direction and the symbol "'"

indicates that the functions F(x, y), 4(X, y) and F(x, y) are specified imprecisely

and contain uncertain data in the sense that the information on these functions are
incomplete. The time component of the forcing function, i.e., G(t), is a specified

quantity. The plate is also subjected to in-plane forces 11 and "2 in the x and y

directions, respectively, with ýi1 and "2 satisfying the constraint that their

magnitudes are less than the buckling load.

The design problem involves computation of the optimal fibre orientation which

minimizes the maximum deflection. The deflection under uncertain forcing

function and/or initial conditions correspond to the least favourable response of
the laminate. The least favourable response is defined as the response producing

the maximum possible deflection at a given point. The computation of this
response and the corresponding forms of the uncertain functions are given as part

of the solution. Let w(x0, Y0' t) be the least favourable deflection at a point P(xo,

yo) obtained by maximizing the deflection w over the uncertain functions F(x, y),

4(x, y) and T(x, y). Then the maximum deflection wmax is given by

Wmax= max w(x, -y, t), t < T' (2)P, t

where Y is a specified time. Optimal design problem can be stated as

,min= ran wax' t < T (3)
0 mx

subject to 00< 0 < 900.

EQUATION OF MOTION AND UNCERTAINTY MODELLING

The equation governing the transient vibrations of the laminate under in-plane

loads is given by
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DP xxxx 2 (B1(D12 2 P66 ) Wxxyy + B22 Wyyyy + P utt

+ 1%+ 2 yy=F (x, y) G(t) (4)

where p is the mass density, and D ij are the bending stiffnesses given by

Z -/2 
%3

where ?(k) is the transformed plane stress reduced stiffness component of the kth

layer which can be computed as a function of the ply angles using standard

transformation relations.

The simply supported boundary conditions on the laminate are

=O 011 XX4+B12Wyy=0 for x=O,a, t>O (6a)

W 012Wxx -B22 yy=0 for y=0,b, t> (6b)

The uncertainties in the forcing function and the initial disturbances are modelled

by expressing these quantities as the sum of deterministic and uncertain parts,

viz.

F(x, y) = F0(X, y) + A(X, y) (7)

V(x, y) = ¢o(X, y) + 0(X, y), T(X, Y) = o0(X, y) + 0(X, Y) (8)

where the subscript "o" denotes the known deterministic part. The only condition

imposed on the uncertain quantities is that they will be bounded in the £2 norm

with the exception of the uncertainty in the displacement initial condition. For the
uncertain vibration problem to be well-defined, the gradient of the uncertain

displacement function needs to be bounded in the L2 norm. Thus the conditions on

f, V 0 and 0 can be expressed as

11 f112 <E 1 IVO*I•~ 11 II2 1 11 (9)

where El, E2 and e3 are prescribed measures of maximum allowable uncertainties.

METHOD OF SOLUTION

The solution of the differential equation (4) is obtained by eigenfunction expansion

of the displacement, viz.
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W(Xh y, e) -(E E Zmn(t) Vmn(X, y) (10)M=1l n=-I

where vfn(x, y) = sin(m7rx/a) sin(nry/b) are the eigenmodes of the freely

vibrating plate with simply supported boundary conditions. The forcing functions

and the initial conditions are expanded in terms of the eigenmodes, viz.

M, W
(F,(x, y), ýo(x, y), IJo(x, y)) = E E (amn, ban, c"n) vinn(x, y) (11)

(f(x, y), 0(X, Y),0(x, y))= (a.., brn, Cm,) vmn(X, y) (12)

mfi=1 n=1

where the coefficients amn, bfnn and Cmn are determined from

b a
(amn, bn c, n) = (4/ab) I (FO, ý, TO) v,,(x, y) dx dy (13)

0 0

The coefficients a mn, b rn and c n of the uncertain components are not known a

priori. However, it is assumed that ainn= brmn= Cmn= 0 for m > land n > N where

f! and N are positive numbers.

SOLUTION FOR LEAST FAVORABLE RESPONSE
The values of the uncertainty parameters amn, bran and c . are unknown subject to

the requirement that they satisfy the inequalities (9). The uncertainty problem
consists of determining these values such that they produce the least favourable

response of the structure. In the present problem, the deflection at a specified time

t = t and location (x, y) = (xo, yo) is specified as the response to be studied. In

the coordinates ( amn, brmn, Cmn), the domains defined by inequalities (9) are

convex regions. In fact, these regions correspond to If x N dimensional elliptical

cylinders in the 3IN dimensional Euclidean space. The constants I and N denote

the number of terms in the truncated series. To obtain the least favourable

response, { a mn}, {brmn} and {Cmn} must satisfy the equality constraints

N N I 2NN 22 22 2 2 2
E N ab E N (m2,/a + n2 lb ) b 4 62/(7rab)

M=l n=l M=l n=l

(14)
I N 2

m=1 n=1 mn230
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This observation enables us to employ the method of Lagrange multipliers to

compute the optimal values of the uncertainty coefficients causing the least

favourable response of the plate. This problem is an equality constrained

optimization problem and can be stated as: laximize w(x0 o, Y0 , 0o) over the

uncertainty parameters amn, bmn, cm, subject to the constraints (14).

OPTIMAL DESIGN EXAMPLES

The solution procedure and the design optimization of the laminate subject to

uncertain excitations and in-plane loads are illustrated with a numerical example.

The example involves optimization under an uncertain forcing function.

Optimal design under a distributed transient force

The transient force acting on the laminate is taken as

.F(x, y) C(t) = pxy/(ab) + f(x) ff(t) (15)

where p is the magnitude of the deterministic force at x = a, y = b and 11(t) is the

Heaviside function given by 11(t) = 0 for t < 0 and ff(t) = 1 for t > 0. Initially the

plate is at rest so that V(x, y) = QI(x, y) = 0. From equation (11), with

Po(x, y) = pxy/(ab), it follows that

a mn= (- 1 )nl+n 4 P /(7r2 m n) (16)

Zero initial conditions yield b mn = b mn = c mn = c mn = 0. The solution is given by

W(X, y, t) = wo(x, y, t) + wJ(x, y, t) (17)

where
W 0(,Y, t) = E E(p ff Q rn.- (_,)ra+nC(4P/ ra n) (1 -coslmnat) v,,n~x.Y (18)

m=1 n=1

"W(X, y, t)= E E (P lf n '1-1n amn (1 -cosi mnt) Vmn(,, y) (19)
m=1 n=1

The values of the elastic constants are taken as B1/B2= 25, G12 /E 2 = 0.,5,

V,122= 0.25 which are typical of an advanced fiber-reinforced composite material.

The plate is taken as a multi-layered laminate with a stacking sequence

(0/-0/0/-0/...). with equal layer thicknesses. Large number of layers ensures that

the bending stiffnesses B16 and B 26 are negligible.
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The optimization results are given in the following table:

a/b = = o Oopt N1 = V2 =5 0op

0.5 4.9 10.6

0.75 42.3 41.4

1.0 44.6 44.8
1.5 69.6 70.0

2.0 90.0 90.0

CONCLUDING REMARKS

The optimal design of angle-ply laminates under uncertain loads is determined by

convex analysis. In the present approach, a non-probabilistic model of the

uncertainty is employed in which the uncertain components of the dynamic loads

are taken to be arbitrary but bounded in the L2 norm.

The solution procedure is outlined and the optimal fibre orientations are computed

for an example involving an uncertain forcing function.
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OPTIMISATION OF FIBER REINFORCED
COMPOSITES

Georges DUVAUT and Ghislaine TERREL

1. INTRODUCTION

Long fibers are currently used to reinforce composite structures, but one main
difficulty is to determine the optimal amont and directions of fibers at each point
of the structure; very often it is the intuition of the engineers that gives the anser;
this one is certainly good if the man has a long experience of the behaviour of
composite structures, which is not necessarly realised and not easily transmitted.

The method which is proposed here is systematic and can be operated by
low experienced engineers. It consist of minimizing a functional which includes the
flexibility of the structure, the price of the material, and the weight of the structure.
Depending of the case, it can also include other parameters. It works here for elastic
and elastoplastic structures, and can be extended to other types of materials.

The algorithm consists of two alternating minimisations: a global one and a
local one: the first one is for solving an homogenized structure problem when the
homogenized constitutive relations are knowned; the second one is two improve,
at each point, the amont and direction of fibers. The type of fibers is given but
the fiber proportion is to be determined. The algorithm is convergent because, at
each step, the functional is decreasing. The method leads quickly to an optimal
composite structure; the resulting stress field is also obtained. Several examples
are given, including plate and shell structures. The method has a very wide field
of applications: aeronautics, naval , cars, civil engineering ...

2. Some results

Up to now, several computations have been performed concerning rectangular
plates, some including holes. The computations have been realised using finite ele-
ment method ; on each element we get the optimal direction of the fibers according
to the loads which have been applied, in order to minimise the displacements, that
is to say the flexibility of the structure.

Following the same kind of idea, we can take into account the optimal rate of
fibers at each element of the structure.

We give some of our results in the following pictures.
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Pictures N°I :. Perforated plate in traction.
Initial state: fibers at 0 degree angle: Uxinitial = 1.105.10-3.
Final state after optimisation : U= = 0.701.10-3.
Initial map of Von Mises stresses.
Final map of Von Mises stresses.

Pictures N°2 :. Two holes perforated plate in traction and shear : F, =
100, F, =-100.

Initial state : fibers at 0 degree angle U.initial = 2.08. 10-3, Uyinitial =
-7.42. 10-2.

Final state after optimisation : UQfinal =-0.745.10-3, Ujfinal = -1.58.10-2.

(A. One) LAB, DE MODtLISATION ET MLCANIQUE DES STRUCTURES (LM2S), URA 1776 DU
CNRS, UNIV. P. ET M. CURIE, TOUR 66, 4 PLACE JussIEu, 75005 PARIS, FRANCE.

URL: <duvautOccr. jussieu .fr>

(A. Two) ONERA / IMFL / DMSE, 5 BRD PAUL PAINLEV9, 59045 LILLE, FRANCE.
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ANALYSIS AND DESIGN OF REINFORCED
COMPOSITE STRUCTURES

A. L. KALAMKAROV
Department of Mechanical Engineering

Dalhousie University
P.O. Box 1000, Halifax, Nova Scotia

B3J 2X4 CANADA

ABSTRACT

In the present paper, the solution of the modeling and design problems for the composite
structures is based on the application of the general asymptotic homogenization model for the
composite shells. This theory enables the prediction of both the local and effective properties
of the composite structure. The design algorithm for the fiber-reinforced shells with a
prescribed set of effective stiffnesses is developed. The set of prescribed effective stiffness
values for which the design problem is solvable, is described, and the effective method of the
design parameters calculation is developed. In particular, the minimal number of reinforcing
layers required for the design of the composite laminate with the prescribed effective
stiffnesses is determined. The design problem is generalized on account of minimization of
the fiber volume content.

GENERAL HOMOGENIZATION COMPOSITE SHELL MODEL

Consider a three-dimensional composite layer of a periodic structure with the unit cell L2.
Thickness of this layer, 8, and scale of the composite material inhomogeneity are assumed to
be small as compared with the dimensions of the structure as whole. It is common practice in
performing the stress analysis of a composite structural member that the inhomogeneous
medium being studied is replaced with a homogeneous anisotropic medium whose response
is believed to be equivalent to that of the actual composite in a certain average sense. If the
composite material has a periodic structure, the averaged (or effective) properties of the
equivalent anisotropic homogeneous material can be estimated by means of the asymptotic
homogenization method, which also gives asymptotically correct results for the local stress
field in the bulk of the composite solid. In the previous studies by the author [1], this
approach was adopted in the analysis of composite and reinforced thin-walled structural
members. As a result, the general composite shell model was developed. It was shown that it
is possible to calculate both the effective and local properties of this composite layer by first
solving appropriate three-dimensional local problems set on the unit cell, and subsequently
solving a two-dimensional boundary-value problem for a homogeneous (or quasi-
homogeneous) anisotropic shell with the effective stiffness moduli obtained at the first step.

The constitutive relations for the anisotropic homogeneous shell, that is those between the
stress resultants N1, N2 , N 12 and moment resultants M1, M2 , M 12 on the one hand, and the
mid-surface strains Ell, 122 (elongations), 61 2 =E21 =co/2 (shear), Cll, T2 2 (bending),

x12 =--- 2 1 =--T (torsion) on the other, can be represented as follows [1, 2]:
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N?,= g<b~4>• + 82 <cpp'41>TXg, N1 2 = 8<bl2X X>axp + 82<c 12X'1>'r)g (1)

M13  82<zb= X>% + 83<zcppXR>Tjg, M 12 = 82<zbi 2Xtt>F-Xg + 83<zc12 •4>t• (2)

where f assumes the values 1 and 2, and is not summed here; X,R = 1,2 and are summed.

The functions bklmn( l,A2 ,z) and cklmn(ýl, 2,z), k,l,m,n,=1,2,3 can be calculated from the

solution of local problems on the unit cell [1]. They are periodic in variables t 1=5 1A 1/(8h 1 )

and 42 =a 2 A2 /(8h 2 ) with periods A 1 and A 2 correspondingly; X1 , 5 2 andy are the orthogonal

curvilinear coordinates, such that the coordinate lines a1 and a 2 coincide with the curvature

lines of the mid-surface of the shell and coordinate lines y are normal to the mid-surface

(r=0), and z=y/8. Functions A 1 (a 1 ,a 2 ) and A2 (a1 ,cz2 ) are the coefficients of the first

quadratic form of the mid-surface of the layer, and 8h 1, Sh 2 are tangential dimensions of the

periodicity cell Q6. The averaging symbol <...> denotes the integration over the three-
dimensional unit cell of composite layer, as follows:

<F(t'2'z>= f F(tl'A2,z)d~ld42 dz (3)

Local problems having been solved, the functions bklmn(tl, 2,z) and cklrmn(l,4 2 ,z) are
averaged by application of Eq. (3), giving the effective stiffnesses of the anisotropic
homogeneous shell, <boxp2 4>, <zbapXP >=<cx~P>, and <zc,,p]g>. One may proceed then
to solution of the boundary-value problem for the homogeneous shell [1], to calculate the
mid-surface strains F-X(5 1,a 2) and 'xt(a1,a 2).

The notation for the effective stiffnesses used in Eqs. (1) and (2) is naturally related to the
local problem formulation in the general homogenization composite shell model. There is the
following simple correspondence between this notation and the conventional notation of
classical laminated plate theory (see e.g., [3]) for the effective stiffnesses:

All = 5i<bllll>, Bll = 8i2<Zbllll> = 8j2<Cllll>, DllI = 8i3<ZCllll >

A 12 = 8<b11
2 2 >, B 12 = 82 <zb 1 1

2 2 > = 82 <c 1 1
2 2 >, D 12 = 83<ZC1122>

A 16 = 8<bl 1 12>, B 16 = 82<zb 11
12> = 82<c11

12>, D16 = 83<zc 1 1
12> (4)

A22 = S<b2 2
2 2 >, B 2 2 = 82 <zb2 2

2 2 > = 82 <c2 2
2 2 >, D22 = 83<zc2222>

A26 = 8<b2 2
1 2>, B 2 6 = 82 <zb2 2

12 > = 82 <c2 2
12 >, D2 6 = 83<zc2212>

A66 = 8<b1 2
12 >, B 6 6 = 82 <zb1 2

12 > = 82 <c 12
12 >, D66 = 83<zc1212>

DESIGN OF THE FIBER-REINFORCED COMPOSITE LAMINATE

The composite laminate is formed by N layers reinforced by parallel fibers. The fiber within a
jth layer, j=1,2,...,N, makes an angle (pj with the coordinate line a 1. The thickness of

laminate is 3, and the departure of the axis of the fiber of the jth ply from the mid-surface
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(y=O) is equal to 84j, where aj is a dimensionless quantity equal to a departure of the axis of

the fiber normalized by 45. The application of the general homogenization composite shell
model to the analysis of the fiber-reinforced laminate provides the accurate calculation of its
effective stiffnesses [1, 4]. These results are used in this section for the design of a
composite laminate with the required set of effective stiffnesses.

Suppose it is required to design the fiber-reinforced angle-ply laminate with the prescribed set
of effective stiffnesses. The application of the general homogenization composite shell model
provides formulas for the effective moduli of the high-stiffness fiber-reinforced laminate in

terms of fiber placement angles qj, fiber volume content O, where j is a number of the layer
and some other material properties and geometrical dimensions of the laminate [1]. Let us
assume that all fibers are of a circular cross-section, and that they are made of a similar
material with Young's modulus E. We also assume that AI=A2=1, which is possible for the
cylindrical shells or plates, in particular. The set of effective stiffnesses in the tangential
directions to the shell surface can be then expressed as follows:

Al1 = 8<b11
1 1> = EcoYl(y,q), A22 = 8<b22

22> = EoY 2(YsP)

A 16 = 8<b 11
12> = EQoY 3 (Y,(P), A26 = &<bl222> = Eo)Y4(Y%) (5)

A66 = A 12 = B<b1 2
12> = 8<b 11

22> = 0.5 Eno [1 - YI(7,(P) - Y2 (W,7)]

where
N N

Yl(Y,(p) = I j cos4 p9j, Y2 (y,(p) = y yj sin4 pj (6)

j=1 j=1
N N

Y3(7,(P) = I yj sinpj cos 3 pj, Y4 (fP) = I yj sin3Epj coscpj
j=1 j=1

N

Here (o = y 0j, T= (y1,Ty2,..,.m), and yj= Oj/o) is the proportion of fiber content within the
j=1

jth layer, and qp = (P1,P2,...,(PN). By replacing functionals Yl(y, p), Y2(Y,P), Y3(7, P), and

Y 4(yp) by the variables Yl, Y2, Y3, and Y4, and using the conventional notation for the
effective stiffnesses, see Eq.(5), we obtain the following algebraic system:

All =ECoyl, A22 =EO)y2, A16 =ECOy3, A26 =EO)y4, A66 =A 12=0.5 ECo(l - yl - Y2) (7)

If we prescribe values of the effective stiffnesses A1 1, A22, A 16, A26, and A66 = A12 , then
Eq. (7) will represent the system for determining y = (Yl, Y2, Y3, Y4). Since the number of
equations in the system (7) exceeds a number of unknowns, the following condition (it is
natural to call it a solvability condition) should be fulfilled:

A66 = A 12 = 0.5 (E0 - A11 - A22) (8)

The system (7) can be resolved explicitly, so that

Yl = All (Eco)- 1 , Y2 = A22 (Eco)-1, Y3 = A16 (Eon)- 1 , y4 = A26 (Eno)- 1  (9)
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The next and major step in the design problem is to determine the fiber volume fractions y =
(Y1,Y2,..-,yN) and the fiber placement angles tP = (91,to2-- ,toN), such that satisfy equations:

Yl(y,(p) = yl, Y2(YP) = Y2, Y3 (Yt) = Y3, Y4(Y,(P) = Y4 (10)

The following natural limitations are imposed on the design parameters:

N
I Yj= 1, yj >: 0, j=I,2,...,N (11)

j=!

toj e [0, it], j=1,2,...,N (12)

The question of a great practical importance here is the determining the minimum number of
layers, Nmin, that is required to design the fiber-reinforced shell with the prescribed set of
effective stiffnesses.

Design Problem Formulation:
(1) determine if the system (10) is solvable in the set of variables satisfying conditions (11)
and (12), and

(2) if the answer on the first question is affirmative, then find the set of solutions of the
system (10) under the conditions (11) and (12).

Design Problem Solution:
To solve the design problem, we first define a following set of intervals within [0, 7t] that

N

impose the limitations on fiber placement angles (pj: ON - [ai,bi] c [0, it], and consider a
i=1

set
U(,N = {Ep - FN, y c RN, y satisfies conditions (11)} (13)

Problem (10) and (11) is solvable in the set of variables UDN if and only if the right-hand
sides of equations (10), (Y1, Y2, Y3, Y4) belong to an image of the set UN under the
mapping Y, given by equations (6),

Y: (yp) E U(DN -- (YI(ytp), Y2 (Yp), Y3(YP), Y4 (Yp)) E R4  (14)

Statement 1:
(a) If N > 5, then image of the set UpN under the mapping Y, given by equations (6),
represents a convex hull [5] of the following curve F:

F = {y e R4 : y = (cos49, sin 4(p, singp cos3(p, sin3(p costp), (P E 4N} (15)

(b) Any point that belongs to the image of the set UDN under the mapping Y can be obtained
as a value of the function Y on a vector (yp) e R5 x D5.

According to the above Statement, a fiber-reinforced angle-ply laminate with any prescribed
effective stiffness moduli { Axp } satisfying the solvability condition (8), can be designed by
using not more than five plies of reinforcing fibers.
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BALANCED FIBER-REINFORCED LAMINATES

Let us consider now a practically important type of a laminate with the balanced placement of
fibers about the mid-surface of a laminate. In this case, for any ply with the fiber placement
angle + pj, there is a symmetric ply with the fiber placement angle - pj, and the fiber volume
fraction y. is similar in these two layers. In the case of balanced reinforcement, the two last
functionals in Eqs. (6) are identically equal to zero. It is also sufficient in this case to limit the
fiber placement angles by the interval [0, 7c/2].

Design Problem Formulation:
(1) determine if the following equations, cf. Eq. (10):

YI(Y9) = yI, Y2(,(P) = Y2 (16)

are solvable in the set of variables, cf. Eq. (13),

VyN = {(,(P) E UN, y = y-j, - (pj = (PN-j E [0, nt/2], j=l,2,...,N/2} (17)

(2) if the answer on the first question is affirmative, then find the set of solutions of the
system (16) under the conditions (11).

Statement 2:
(a) If N Ž 6, then image of the set VDN under the mapping { YI(y,P), Y2(y,(P)}, given by two
first equations (6), represents a convex hull of a curve

I1 = {ye R2 : y=(cos4(p, sin4 (p), (pE ON} = {yE R2 : y=(TI, (1 -jj)2), "1E cos4bN} (18)

where cos4 F denotes the image of the set (D under the mapping (cos)4 .

(b) Any point that belongs to image of the set VyN under the mapping { Y(y, P),Y2(0,yP)}
can be obtained as a value of the function {Y1(y,(p),Y2(yq))} on a vector (y0,p)E U0 6.

According to the above Statement, a balanced fiber-reinforced composite shell with any
prescribed effective stiffnesses {Axp }, satisfying the solvability condition (8), can be
designed by using not more than three pairs of plies with fiber placement angles +cpj and - pj.

MINIMIZATION OF FIBER VOLUME CONTENT

Let us consider now an optimization of the design problem concerning the minimization of
the fiber volume content, o. We include now the variable o) into the set of independent
variables of the system (9), and consider the problem of minimization of (o on account the
condition that the laminate has the prescribed set of effective stiffnesses. Suppose, we
already solved the above design problem for some fixed co value, e.g., co = coo, so that, cf.
Eq. (10),

Yi(YsP) = Yi0, i = 1,2,3,4 (19)
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where y0 = (ylO,y20,y3 0 ,y40 ) is determined from expressions (9) with (0 = 0c0. It follows

from the formulas (9) that y = (0o3/0)y 0 will represent a solution for a given 0( value.

Moreover, fiber volume fractions yi satisfy conditions (11). As a result, we arrive to a

problem to find a minimum (o value, such that the point y(co) = (00o/w)y 0 belongs to convex

set, conv F. Curve F has been described in Statements 1 and 2. The set

L = { y(CO) = ((00/(0)y 0 , CO E (0, 0C0)} (20)

represents a ray having an origin in the point y0 c cony F, and tending to infinity when

(o-40. Since the set conv F is compact (because F is compact), the ray L will intersect the

boundary of the convex compact set conv F when (o equals some certain value, (0 = co*, and

they will have no other intersections when (o < co*. We formulate this result in form of the
following Statement 3.

Statement 3:
The above formulated problem of the fiber volume content minimization is solvable if the

design problem with the required set of effective stiffnesses and some prescribed coo value is

solvable. The co minimum value is equal to co* that corresponds to an intersection of the ray L

with the boundary of the set conv F. A design project for the composite shell with a

minimum fiber content Wo* can be found by solving problem (10), (11) or the problem (16),

(11) with a right-hand side equal to y = (coo/co*)yO.
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OPTIMUM DOME CONTOUR OF COMPOSITE SHELL
WOUND WITH A ROVING OF FINITE WIDTH
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Tel: (095)-915-2127, E-mail:akrikan @ openmail.irex.ru

Abstract- Composite shell of revolution formed by winding is considered.
A new thickness formula for the shell wound with a roving of a finite width
has been derived. Using equilibrium equations and Clairaut's equation for
the geodetic winding an optimum dome contour of the shell is obtained
with a uniform stress state over the shell. The numerical results and
graphics are given to show the real shell thickness and optimum dome
contour depending on the roving width.

1. INTRODUCTION

Composite shells of revolution formed by filament winding (Fig 1) have a
wide application as pressure vessels and as bearing structures for a solid
rocket motor case. In this paper a new thickness formula for a such shell is
proposed. The traditional one was suggested for a winding with a roving of
an infinitesimal width. Real shells are wound with a roving of finite width
to accelerate the winding process. The suggested formula substantially
differs from the previous one in the polar opening range, where shell radius
is comparable with a roving width. An optimum dome contour is defined
using the new formulas. Comparison of the new meridian shape is done
with the previous one.

2. SHELL THICKNESS

A thickness distribution is the important variable for design and analysis
of composite shells of revolution produced by filament winding. Obviously,
the thickness h of the shell is a variable quantity because during continu-
ous winding the same number of rovings passing through cross section is
located along the parallels of different radii. Usually the next formula is
used [1]

h nf (1)
27rr cos
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where n - number of rovings passing through a cross section; f = B6
- cross section of the roving; B, 6 - roving width and thickness respec-
tively; r - shell radius; ý - angle between a fiber and the meridian. The
Eqn (1) can be obtained in the following manner. Let set aside a cross
section shell element and approximate it by cylinder and unfold it on a
plane. In so doing n rovings with cross section f pass through n arbitrary
cross section r=const. Then, taking into account that rovings intersect
parallels at an angle of 7/2 - y, we can write the formula (1) for the area
of the shell cross section. This formula is suitable for a gently sloping
surface and in the case when a roving width is significantly less than shell
radius (B/r - 0). However this formula is not correct near polar open-
ing range (h - oc at o -) 7/2), when in fact thickness goes to zero
at p ) 7/2. This can be avoided if the shell cross section element is
unfolded as a taper surface. Let set aside a cross section element near the
shell polar opening and approximate it with a taper element and unfold
it on a plane (Fig 2). At a point A the roving is a tangent to the polar
opening, so all its fibers are perpendicular to the taper meridian OD. The

roving cross section is represented as an arc ab= 1 t3, where 1 ' rV1 ± z 2

- the meridian length, z = y'(r) - derivative of the shell meridian y(r).
The angle / can be expressed through the wound angle y. Considering a

triangle OaA we have /3 = 7r/2 - p. Then ab= rv1 + z2(r/2 - o). Multi-

plying ab by the roving thickness 6 and number of rovings n and dividing
by 27rr we'll get the shell thickness

h(r) = ni + z2(w/2 - p).

27r

Taking into account that a geodetic winding takes place, i.e.

sin o = ro/r, (2)

we obtain

S V/1+z2 G- arcsin r 0_< ro r< r* (3)
h~) 27r ~~ 2' r 0

where radius r* approximately can be defined as follows
Br0 r0 + B(4)

+ 1 +z 2 (r*)

247



Now set aside an infinitesimal cross section shell element at the central
part of the dome 10 + B < 1, approximate it with a taper element and
unfold it on a plane (Fig 3). The roving cross section is represented as an

arc ab= i(03j -/32), where I = rvrf -+z2. Roving fibers are parallel to each
other, so /3 1 -/32 = 92 - 01, where (pi, 92 - wound angles of the extreme
left and right roving fibers respectively. As is well known, a flexible fiber
wound over the surface of revolution without friction tends to align along
the geodetic line of the surface obeying the Clairaut's equation (2) whence
we have

p1 = arcsinro/r, 92 = arcsin(ro + B/IV1 + z2)/r.

and thickness formula is reduced to the following

h(r) n=/6 l ( r+snO+B/ /+z2.r \ )
Sarcsin arcsn , r < r.2 r -

(5)

We can expanse Eqn (5) in Taylor series using Eqn (2)

nf / sin o A I+2sin29P A 2 (
h(r) = 27rr cos cos2------+ 2- Wcos2! + 3- . , (6)

where A = B/r N/1 + z2(r). Eqn (6) is true for r* < r and turns into
Eqn(1) when (Bir - 0). At a point3 r = r* Eqn (3) coincides with Eqn
(4). Three curves of shell thickness at various roving widths are given in
Fig 4, from which follows that the more a roving width than the less a
peak height of the curve.

3. OPTIMUM DOME CONTOUR

Derivation of the optimum dome contour of filament wound shells was
done in [1] and based on the thickness formula (1). In this work the
refined optimum dome contour based on the new formulas (3,5) have done.
Equilibrium equations can be written as

(rNa)' - Np = 0; (7)

Z/ Na + zr N. = -p, (8)
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where N, and Np - stress resultants acting in the shell along and across
the meridian; the prime denotes the derivative with respect to r. Substi-
tuting Na from (7) to (8), taking into considering the equality (z/vl + z2)' -

z'/(1 + z2)3/2 and integrating the obtained one with due regard for the

condition 1/z(a) = 0 (which requires that for r = a the tangent to the
meridian be parallel to y-axis) we have

V/1 -+z2 2N,-+ N (9)

z pr

Further a netting analysis is used, i.e. we assume that stresses U 2 and r 12

borne by matrix are negligible in comparison with stresses o1 acting along
the fibers. The stress resultants are expressed through stresses a 1 in the
following manner

B B

Na = acfos2 WPdh; N#= a fsin2 pdh, (10)

0 0

where dh - thickness of the shell, formed by roving with dx width, where
x E [0, B] - current coordinate along the roving width. Using Eqn (5)
we derive

n 1 du* . _*ro + x/V1 +7z2
dh - -1+9 u - ; (11)

Substituting (11) to (10) and supposing z(r) =const along the width
we obtain

Na = 0O,5A -- arcsin u - u -Ij__2 0': r<r
(U

Ul

Na = A f VT -u2 du = 0, 5A (arcsin u + uvT1 -- u2) , r < r,
U0  U0

(12)

where A = 0, 5nbuV1 + z2/7; uo = ro/r; u1 = uo+A; A = B/rvr iizY .
Eqn (10) with Eqs (12) is used to determine the equilibrium shapes of
shells of revolution in which loading is sustained by a system of fibers.

Expanding Eqn (12) in Taylor series we have

1•+9 U2 1-u 2  U2 1(1

z - 1 1 -  2! (1- 3! /. (13)
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where a V/17- •2 and r* < r < a. Function z = y'(r) is determined

as a solution of nonlinear Eqn (13) written in unopened form. The dome
contour equation y(r) is defined by numerical integration z with respect to
r. The Fig 5 shows contours of shells with polar opening radius fo = 0, 5,
produced by roving of an infinitesimal width (curve 1) and rovings of
various finite widths: B3 = 0, 10 (curve 2) and B = 0,20 (curve 3). For

the laminate shell we have a similar expression

S- I -(?2arcsin!um-Um rom r r~m;

(14)

1+Z 2  M-1 r A 1 Ax/r'÷z_ _ El -ui2 1  -u1 2 2 !A (l-u 2 )213' ""9 r~ • r ~rom+l,*

Z C i 2! (1 -ui2 !

(15)
k

where /3i = nifiori/(nifi 1 ), a = 1, j - oif, ui -roi/r. Eqn (13) is
i=1 1

used to determine optimum contour at r*1 < r < r02 . Fig 6 shows thecontours of two laminate shells (r0i -0,5; r02 = 0,9; /3 = 0,16;) based

on Eqs (14),(15) and (13) at different roving widths; curve 1 - B -P 0;

curve 2 - 0, 10; curve 3 -- B = 0, 20.

4. CONCLUSIONS

1. Thickness formulas for the shell produced by roving winding (3,5) has
been derived that permit to specify Eqn (1) near polar opening range.

2. Optimum dome contour has been obtained based on Eqs (3,5) formed
by rovings which are slightly stretched in an axial direction of the shell
with comparison to contour formed by rovings of infinitesimal width.
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ABSTRACT
Self portable trailers are different from usual portable trailer structures since it is the structure by itself
which support all load requirements. A new design and optimization of the structure of a self portable
frigorific trailer is presented. The weight optimization of the frigorific self portable trailer can be
achieved due to the great number of possible combinations which are feasible to be done with different
kinds of materials and their corresponding geometric configurations, this involved a redesign of the initial
structure as well as the ultimate calculation, obtaining 30% weight savingt17 1201 E19J`

Keywords: self portable frigorific trailer, composite materials, substructures, finite element method.

1. INTRODUCTION
Low fuel consumption and higher velocities are some of the benefits that can be achieved as a
consequence of this weight reduction. An important design parameter that can be kept in mind is the
specific strength of composite materialsi"I because the most of uses of composite materials in the
automotive industry are due to this characteristic. Nowadays, safety requirements and vehicle stability as
well as fuel consumption are important design parameters of transportation vehicles and composite
materials offers alluring solutions for all these requirements.

2. DESIGN OF THE SUPERSTRUCTURE
Frigorific vehicles are widely manufactured all over the world and due to the ability to introduce new
materials makes this type of structure feasible to be redesigned and optimized for weight and cost. A self
portable frigorific trailer is a new design which is different with respect to last designs because of the
proper definition. Usual portable trailers are supported in a metallic frame, as shown in figure 2.1, that
takes the task of bearing reaction forces and stresses caused by the structure and the load in static and
dynamic situations. So, this portable trailer it is usually an unloaded and over dimensioned structure. Self
portable trailer (see figure 2.3) are designed to substitute frame tasks; that is, it is the same box structure
which has the role to bear reaction forces and stresses. So, metallic frame is removed (see figure 2.4) and
a replacing carbon grid is fitted in this place.

potable treailer selfportable trailer

Figure 2.L Selfportable trailer definition.

This grid is introduced inside the sandwich panel of the floor structure, as well as the grid which is
attached to the parking device. Only a little metallic frame is maintained in the rear axes group because of
the standardization of this part. A light structure is achieved this way and weight saving can be obtained,
gaining more load capability and reducing fuel consumption. Global dimensions of the structure are
given below and they must be kept invariable because of the standards of the European Community. Only
internal dimensions as well as material composition are suitable to be varied. (Trailer length: 13500 mm ;
Trailer width: 2590 mm; Trailer height: 2800 mm). Main structure is basically composed of five
substructures, namely; front, which has to bear cool equipment; floor, which has the task to bear all the
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stresses due to the carried load and the rest of the structure as well as to transfer loads to head truck by
means the fifth wheel (king-pin) and to the rear axis group; laterals and roof making a close box
structure1 301 . Once all substructures are assembled, the result it is a close structure with a good flexural
and torsion behavior resembling a hollow box beam as shown in figure 2.2.

Front

Figure 2.2. Substructures assembling

Taking a look at the micro-composition of the self portable trailer, it can be considered composing of
different parts depending on the substructure. All substructures are composed by stiffened sandwich
panels'29' but the stiffeners of laterals and roof are light beams made of glass fiber laminates.

Figure 2.3. Self portable frigorific semitrailer view, Figure 2.4. King-pin structure

3. FINITE ELEMENT MODEL AND CALCULATION

3.1. Model Creation
Finite element analysis[31 has been carried out on the whole structure. A Silicon Graphics Workstation and
IDEAS program was used to do the modelization.(see figures 3.1 to 3.3) [18. The modelization was done
bearing in mind two basic ideas: introduce all the components of the structure (stiffeners, laminates,
cores, etc.) and obtain the maximum discretization (refined meshing) to analyze singular areas.

Table 3.1. Number of nodes and elements in the modelization
Zone no Nodes no Elements
Floor

- king-pin zone 3.993 2.626
- rest zone 2.226 1.672

Left Lateral 4.078 2.532
Right Lateral 4.078 2.532
Front 665 450
Roof 883 572
TOTAL 15.923 10.384
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Frigorific trailer is considered as a superstructure ( 2
1 [25] not only due to dimensions but also to the number

of different materials forming the structure. Manufacturing process makes the substructures composition
totally heterogeneous. Modelization was made by means substructures technique, this way we could
follow the same order than the manufacture process, joining different parts as in the real case. The
number of elements and nodes per substructure are shown in Table 3.1.

Figure 3.1. Half model discretization

Figure 3.2. Half king-pin grid detail. Figure 3.3. Roof and floor details.

3.2. Load Hypothesis and Boundary Conditions
The analysis of different external loads over the structure has resulted in obtaining several basic load
conditions. These basic load conditions have been subdivided in four groups; vertical loads, longitudinal
loads, transversal loads and the corresponding loads for specific testing to carry out the quality control.
Description of basic load conditions as well as the basic boundary conditions are as follow[2 21 :

1) Basic load conditions. 2) Basic support states.
- Vertical loads: 2.1. Support over suspension in rear axes
1.1. Gravity load of the trailer. and suspension in tractor head.
1.2. Maximum distributed load in the trailer. 2.2. Support over suspension in rear axes
- Longitudinal loads: and parking supports.
1.3. Trailer with maximum load accelerating with 2.3. Specific supports when statutory
maximum acceleration. testing.
1.4. Trailer with maximum load decelerating with
maximum deceleration.
- Transversal loads:
1.5. Trailer swerving with minimum swerve radius.
- Statutory testing loads:

1.6. Trailer in testing over lateral.
1.7. Trailer in testing over front.
1.8. Trailer in testing over floor (fork-lift).
1.9. Trailer in testing over roof.

3.3. Results
Calculations were done using ABAQUS/standardl] as a finite elements code in a CONVEX computer. A
security coefficient of three was taken for the calculations. Results for every load case are showed in
figures 3.4 to 3.12, where deformed shapes and contour of principal stressesf23' are presented (being the
upper figure the deformed shape and the second figure the stress profile for each case). In figure 3.13 the
deformed shapes of the three principal frequencies are shown for loaded and unloaded trailertgl [13]
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Figure 3.9. Sudden braking with maximum load

Figure 3.4. Gravity load.

Figure 3.10. Strong swerving with maximum load.

Figure 3.5. Maximum distributed load.

SI.

Figure 3.11. Lift-fork during parking state.

Figure 3.6. Parking state with maximum load.

2 ~Figure 3.12. Roof testing.

Figure 3.7. Lateral testing.

Figure 3.8. Front testing. (D) JI

Figure 3.13. Principalftequencies
I) Empty trailer. H!) Loaded trailer.
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4. WEIGHT OPTIMIZATION
The aim of this study is intended to optimize the weight of the present portable trailer (see figure 4.1)
without an increase of cost. So, new raw materials as well as new configuration of present materials will
be used in order to get high strength and rigidity and light structures at low cost. Numerical analysis will
be used to notice weak areas and no-loaded zones which will be feasible to be respectively reinforced or
lightened. The following tables and figures show how materials can be modified in order to achieve
weight savings and maintaining design conditions as stiffness-strength and inertia-weight ratios.

Present weight

800T- 
-

700 -

600----------------------. o...

500F-oor---------------ral 2 oocFon
0j COMP6 Mat

400 ---- --------------------.--- -

300 -- - - - .--- - (Fm

200 -- - - - - -- - - - ---

Floor Lateral 1 Lateral 2 Roof Front

Substructure

Figure 4.1. Present substructures weight

Present skin configurations belonging to sandwich panels of all substructures (lateral, floor, roof and
front) used to be composed by mat or mat and woven laminates. An adequate change of thep ercentage of
fiber in volume content, and modifying weight content in order to maintain inertia and strength
conditions, weight saving percentage can be obtained.

5. CONCLUSIONS
The philosophy followed to perform the optimization study has been to replace present configurations by
new ones which satisfy all stiffness and strength requirements but taking a substantial weight saving. Due
to the impossibility to modify some manufacturing process, the basic design has been maintained and
therefore material configurations have been optimized mainly. The most important changes were:

- appropriate design of laminates (introducing non-balanced woven).
- increasing of laminate properties (increasing the percentage of fiber in volume content)
- replacement of reinforcement beams by pultruded beams
- replacement of the steel grid at the fifth wheel zone by other made of carbon

Percentages of weight savings

Roof Front

10% 1%

Lateral 2 - .
16%"-

<57%

Lateral
16%

Figure 5.1. Weight saving percentage obtained

Therefore a weight saving of about 30% has been achieved and this makes this new design more
competitive because of its lightness. The entire model has been designed in composite materials,
calculated by means the most advanced methods of calculation, and offers the advantage to have one ton
of weight saving which implies increasing of load capacity and reducing of fuel consumption.
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Figure 5.2. Weight comparison
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DESIGN OF COMPOSITE PLATES UNDER CYCLIC LOADING
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INTRODUCTION

In order to utilize completely the potential of composite materials as advanced materials
it is also necessary to propose a methodology for assesment of their long term properties.
Development of such a methodology requires analysis of the basic mechanisms of
degradation of properties and then the application of the knowledge into modelling of the
structural response due to fatigue loads.

Now a great number of monographs and review papers present the actual state-of-the-art
understanding of damage mechanisms in composite fatigue. However, in this work we do
not intend to dwell on it. It is worth to emhasize only that the conducted analysis of
fatigue damage may be classified in the following way:
"* the parametrical description of fatigue process, employing also the statistical

distributions - see e.g. Yang et al. [1],
"* the progressive damage analysis with the use of the fracture mechanics techniques -

possible cracks and their progression are treated as delaminations in composite
materials - see e.g. O'Brien et al. [2].

Generally, the fatigue damage mechanisms results in the reduction of the strength,
stiffhesses and other material properties. The amount of the stiffness loss depends on the
fibre orientations of the cracked ply, stacking sequences,the relative moduli of the fibre
and the matrix and the density of cracks in the individual ply.

The aim of the present work is twofold:
i. to propose and discuss methods of numerical analysis of composite structures, such

as plates and shells, and subjected to fatigue loads, mainly with the use of the
commercial FEM package NISA II [3],

ii. to demonstrate the results of numerical studies on the example of plates made of
aramid/epoxy resin and subjected to cyclic shear loads.

The present work is an extension of methods and results discussed by Muc & Krawiec
[4].
At the end of our considerations we present an experimental model which have been
used to the critical verification of numerical modelling. However, the results of the
fatigue tests have not been completed yet.
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OPEN PROBLEMS IN MODELLING OF FATIGUE FAILURE PROCESS

Fatigue damage in composite laminates or structures (fibre reinforced plastics/ polymeric
resin) is a phenomenon involving various failure mechanisms that are typically preceeded
by an accumulation of matrix cracks. The consistent and correct description of
progressive failure behaviour due to fatigue load is a complex and difficult task taking in
addition into account possible statistical distributions of material constants. However,
even in the pure deterministic approach to the problem one can encounter a variety of
problems that cannot be uniquely solved. Therefore, at the beginning we intend to point
out the basic areas of difficulties and then in the next paragraph to propose and present
our choice - they are listed below:
1. Geometric nonlinearities - the development of the material degradation during the

fatigue process results in the increase of deformations, so that a consistent
geometrically nonlinear approach including even large strain analysis is required in
numerical modelling of fatigue problems. It is especially important as bending is a
dominant failure mode.

2. 3-D vs. 2-D approach - delamination failure is one of possible modes of failure of
composite structures and as it is well-known the correct description utilizes ai,
components of the stress tensor. In this sense plate or shell theories should
incorporate normal deformations into kinematic variables or it is necessary to use the
full 3-D approach what is equivalent to the application of numerical analysis only due
to the variety of boundary and loading conditions.

3. Material nonlinearities - static deformations of composite materials have a great
influence on the fatigue behaviour. For instance, Yang et al. [1] distinguish linear
(fibre dominated) static stress-strain diagrams and nonlinear .ones (so-called matrix
dominated). It proves evidently that material nonlinearities should be taken into
account.

4. Failure criteria - there is lack of generally acceptable failure criteria for composite
materials. In view of that a lot of authors emphasize that effect on fatigue modelling

5. Progression of fatigue failure - in general, it requires nonlinear approach since
possible openning or closure of cracks is a typical contact,i.e. nonlinear problem. Our
proposals of solving it are disccussed further.

In summary, one can notice immediately that a consistent approch to the fatigue problem
is associated with nonlinearities of various types joined commonly with the 3-D analysis.
Thus, the modelling requires a strict FE approach but associated with the understanding
of the theoretical background of problems.

FATIGUE DAMAGE ANALYSIS

The mechanisms developed for polymeric composites are complex and quite different
from those for metals. In contrast to them the fracture of composite laminates is induced
by the initiation and progression of four failure modes such as matrix cracks, fibre
breaks, delamination between adjacent plies of the laminate and interfacial debonds.
Despite of the local damage the first three types of failure modes may be described
sufficiently well (see Tsai and Hahn [5]) and analysed with the use of the lamination
(homogenized) theory.
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The matrix failure is determined with the use of the Tsai- Wu criterion:

01lll+ F 111 + F 12 4711072 2 + F 02 "22 + F22"22 + F 44 0"7 •1 (1)

since it predicts the layer strength for stress states with relatively large transverse stresses
that affects much more the matrix than fibres. Thus, for an individual ply in the laminate
its post-cracking stiffness is is changed (the matrix stiffhess is removed).
The experiments demonstrate that for unidirectional composites the Tsai-Wu criterion
overestimates the strength in the fibre direction. Therefore, for the analysis of fibre
cracking the use of the simplest maximum stress criterion is proposed:

Y Y•o-c <otis i, j= 1,2,3 (2)

Finally,in the post-cracking stiffness matrix of an individual layer the fibre stiffness is
eliminated.
As it is reported in the literature (see e.g. Talreja [6]) delamination damage is caused and
treated as the mode I and II of crack growth. The interlayer separation is an equivalent
to a macro-crack in metals. In the present work, the initiation of delaminations is
investigated with the use of the quadratic delamination criterion (Lagace and Brewer
[7]):

2 2 02
U-13 - 23

--x - --2- ---2 <x1 (3)X13 X23 "33

As it was mentioned previously the definition of the crack initiation is still a subject of
controversy. However, for our purposes we use the definitions given by Eqns (1) - (3).
Crack propagation will be examined in pure numerical way using NISA II package. The
crack growth is determined by the classical ratio dc/dN, where a denotes a crack length
whereas N is a number of cycles. The fatigue crack growth life estimations are carried
out with the use of the following criteria (Broek [ 8 ]):

- Paris law
- Forman law - it includes the stress ratio as a parameter
- Elber's law - the first crack closure model
- Collipriest law
- Walker's law

The applicability of the above relations depends entirely on materials used in the analysis.
Therefore, we intend to examine more criteria in order to find the most suitable for our
analysis, taking also into account that the above laws have been evaluated for isotropic
materials. Finally, with the use of the above relations it is possible to estimate fatigue life
of the structure and (or) the stiffness degradation.

261



SQUARE PLATE UNDER SHEAR CYCLIC LOADS

Let us consider the example of a square plate (250 x 250 x 1.5 mm) subjected to cyclic
shear loads. The plate is made of aramid/epoxy resin and consists of four layers having
the same thickness. The numerical analysis of plate deformations have been performed
with the use of 3-D nonlinear wedge elements (NKTP 4) having 6 or 15 nodes (NORDR
= 10 and 11, respectively). The aim of the study was to study the crack initiation and

a

Fig. la Deformed and undeformed Fig. lb The initiation and the form
shapes of plate (not to scale). of a crack (not to scale).

then to compare the fatigue life of the structure.The numerical model of the structure
(deformed and undeformed) is presented in Fig. la. As it may be noticed the
deformations of the structure are large, so that in the numerical analysis it is necessary to
take into account not only geometrical nonlinearity option but also large strains. In
addition, due to the change of the deformed shape we utilize deformation dependent
forces (non-conservative) - their direction depends on the deformation. A full Newton-
Raphson procedure was used to solve the nonlinear equations. The fundamental loading
path is demonstrated in Fig.2, the increase of the loading parameter up to the average
value and then repeated loading and unloading.

A Maximum

/ Mean
value

Minimum0

Cycles
Fig. 2 Loading trajectory.
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No Propagation law Life (cycles N)
1 Paris 0.423E05
2 Forman 0.21 1E05
3 Elber 0.178E05
4 Collipriest 0.314E07
5 Walker 0. 189E05

Table 1. Comparison of fatigue life estimations.

Using the symmetry of the problem (see Fig. 1) with the increasing load parameter an
initial crack have been detected in the form of an ellipse at the plate center - Fig. lb. It
turns out that the delamination between third and fourth plies is a dominant failure mode.
The delamination arises due to the significant bending effects. It is worth to emphasize
that the classical geometrically linear analysis leads to the classical plane effects. Bending
of the plate under shear loading (before buckling) can be obtained only with the use of
large strains option associated with the deformation deoendent forces. As the initial
failure have been observed the initial numerical problem have been remodelled in order to
analyse the crack propagation. Then, with the use of ENDURE (fatigue and fracture in
the NISA II program) the crack propagation have been investigated. Table 1 gives the
crack propagation lives corresponding to an initial and final crack length of 0.1 and 0.3
mm at R=0. 1 obtained by various propagation laws.
The differences between the examined propagation laws are very high, even in the order
of the magnitude. In general, the Collipriest law gives the worst estimations. On the
other hand, the predictions of fatigue lives is very close to each other for three laws, i.e.
proposed by Forman, Elber and Walker.

EXPERIMENTAL STUDIES

To evaluate the correct values of the fatigue life (understood as the number of cycles),
the initiation of the crack and the final failure modes of structures an experimental rig
have been prepared - Fig. 3. Up to now the static failure modes have been studied. As it
may be noticed in the photograph a typical buckling failure is a dominant static failure
mode. However, during the experiments a single delamination have been observed that
arised close to the plate center under the top ply, particularly due to the increase of
deformations in that region. It confirms entirely the numerically evaluated mode of failure
-Fig. lb.
The fatigue experimental analysis of plates is carried out in our laboratory and the results
will be reported later.
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Fig. 3 Photographs of a damaged plate subjected to shear loads.
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ABSTRACT

Stress analysis of isogrid cylindrical shell has been performed using exact finite
element model and integrated equivalent stiffness model. The integrated equivalent
stiffness model was used to homogenise grid structure with laminated skin and thus
simplify the use of optimization subroutines available in the software package.
Comparison of the results obtained on the basis of exact and equivalent stiffness
models using two different FEM codes has been performed and conclusions on the
efficiency and accuracy of equivalent stiffness model are made.

INTRODUCTION

Composite grid structure represents the lattice of interconnected ribs made from
continuous very strong, stiff and tough fibres. Unidirectional arrangement of ribs
possesses good impact damage tolerance, resistance to delimitation and crack
propagation across the grid. This structural concept also has great potential for
automation of manufacturing process including continuous filament winding and resin
transfer moulding. Only within the recent time the concept of the grid made of
unidirectional continuous fibres was introduced and it is predominantly applied in
aerospace industry [8-10]. This new concept possesses a lot of advantages compared
to aluminium isogrid structures. Due to the geometric constrains of composite
filament wound isogrid the optimization tool is required when the design of the
structure with different loading conditions is undertaken.

p

11

Figure 1. Loading and boundary conditions.
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PROBLEM FORMULATION

In the present study the structure under consideration has the shape of circular
cylinder (Figure 1) which is fixed at one side and free at the opposite side. The system
is subjected to different loading conditions which are applied on the free edge of the
cylinder. The material of the cylinder is a grid (Figure 2) consisted of interconnected
composite shrouds covered with outer and inner layers of composite skin.

z
Z

Figure 2. Grid structure.

Exact Model

Exact FEM model has been created using FEM package COSMOS/M. Triangular
laminate composite shell elements and 3D beam elements representing top and the
bottom layers of skin and lattice respectively (Figure 3) were used. Both elements
were assigned orthotropic material properties with the corresponding material
directions given on the Figure 4. Laminated shell element SHELL3L used in the
model takes into account transverse shear stress. The total number of finite elements
required for precise modelling of the isogrid structure is quite large. In the case of
cylindrical shell 2775 elements were used (see Figure 3). As it could be seen the large
number of finite elements required for exact modelling of the isogrid structure is
determined by the need of FEM mesh (beam and shell elements) to be coincident with
the real geometry of the isogrid. Creation of complex models like this will make stress
analysis extensive and could pose difficulties in further optimisation calculations
which usually require many iterations and in the case of exact model constant
remeshing of the structure. The above-mentioned difficulties could be avoided by
incorporating homogenized model with the stiffness equivalent to the exact modal.

60 degrees 60 Se *f

Figure 3. Exact model. Figure 4. Orientation of material axes.
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Equivalent stiffness model (ESM)

Several attempts were made to represent the complex non-uniform structure as a
uniform homogeneous structure with the same stiffness properties as the original one.
Some of the approaches [3-7] were undertaken for the creation of Equivalent Stiffness
Model (ESM) models suitable for the particular applications, i.e. certain type of
loading conditions, rib's orientation, etc. In these models assumptions were made
regarding stress distribution and in some models in-plane bending and shear of ribs
are not taking into account. The most complete transition from the exact model to the
equivalent stiffness model has been performed by Chen, H.-J. and S. Tsai [1] for
arbitrary rib configuration. Their model takes into account in-plane bending and shear
of ribs as well as local buckling. Under this approach a lattice panel is characterised
by a iegular plate theory. The stiffnesses of each unidirectional set of parallel ribs are
derived and calculated separately and then the total stiffness of the whole grid panel is
obtained by the principle of superposition for all individual sets. The resultant
equivalent stiffness matrices for the orthotropic grid with outer skins then can be
written as:

[A] = [A]skin + [A]rb

[B] = [BIski) + [B]rb

[D] =[D]s"ki + [D]yb
[H] =[H]skin + [H]rib

Where [A], [B], [D] and [H] are correspondingly extension, coupling, flexural and
transverse shear stiffness matrices of the structure. Notations with indices skin and rib
are the stiffness matrices corresponding separately to the ribs and outer skins:

S= J[Q]dz

[B]*" = J[Qlzdz

[D]"ki; = J[Qlz2dZ (2)

[sin C55 C45l

[] =XfC45 C44 dz

"EA- + 2 E"A 4  2 ExA- m2n2 0
do do do

[A]r'b= 2 ExA .m2n2 EA 9A +0 2 E`AO n4  0 (3)
do d9o do

0 0 2 ExA- m'n2
do
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,D"Ib D'b o 1
[D]r/,, =f Dib DFrib 0

0 0 D6rib

0 E'Ag°~A0

Edg--- + 2X EE.Ao n 2

[H]rib d 0
__d__ do__ ____

D)','h E-'I° 2 E:'I .4 +2E.J° .2,n2

do do d9

D2rb Ex90+2 ExIo m4 ±2 EdJo m2n2

d90  do do (4)

Drib2= 2",Db= 2 E§I° m2n2 - 2 ExJ0 mnn2
2 21 do do

Drb = 2 ExJ0 m2n 2 + EJ + E.J90 +EJ 6 (M2-n2)2

"66 4d° 4d 90  2d 0

where m = cos 0, n = sin 0; E,, E. are longitudinal and shear moduli; d - spacing for
each set of ribs; J's, A's and I are torsion constant, area and second moment of
inertia of ribs respectively; X is shear correction factor. Subscripts 0, 90 and 0
indicate differently oriented sets of ribs.
In the present study the equivalent stiffness model has been created on the basis of
orthotropic shell elements with non-homogeneous material properties described by
[A], [B], [D] and [H] matrices using FEM code Pro/Mechanica and was
implemented in the analysis of the isogrid structure described in the following section.

STRUCTURAL ANALYSIS AND RESULTS

For the given circular cylindrical shell (Figure 1) equivalent stiffness matrices were
first calculated and then used as an input data for the shell elements in the ESM
model. The same problem was modelled using shell and beam elements with material
characteristics given in the Table 1 and cross-section geometry shown on Figure 4. In
this case COSMOS/M FEM package was used. Linear static analysis have been
performed for the following loading conditions: tension and bending in the form of
prescribed displacements uniformly applied to the free end of the cylindrical shell.
Obtained results presented in the Table 2.

Figure 4. Cross-section and arrangement of the ribs in isogrid structure.
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Table 1. Material properties of the ribs and skins.

Material El, Pa E2, Pa v 12  G12, Pa
T300/5208 1.81 10 1.03 10 0.28 7.17 10

Geometric parameters of the structure:
Ribs: b=0.003 m; h=0.005 m; d90=0.0025 m; d0=0.0025 m;
Skin thickness: hsk=0.0 0 2 5 m
Angle of isogrid rib's orientation: 0=30 degrees.

Table 2. Comparison of obtained results.

Load case COSMOS/M Pro/Mechanica

Applied 'Max VM Applied Max VM Differences, %
displ. m. stress, Pa displ. m. stress, Pa

Bending 0.003 7.74E+08 0.003 8.55E+08 10.49

Tension 0.003 1.39E+09 0.003 1.28E+09 7.63

CONCLUSIONS

Linear static analysis of both models shows a good correlation in the obtained results.
It also shows the possibility to substitute complex and extensive stress analysis of
exact FEM model with analysis on the basis of equivalent stiffness model within very
reasonable range of accuracy. This makes further optimisation process of complex
grid structures less complicated and time-consuming. Equivalent stiffness model is
currently being implemented into optimization routine.
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FIBRE COMPOSITE INTRA-MEDULLARY NAILS:
DESIGN CONSIDERATIONS

CJ von Klemperer and R Bodger

Department of Mechanical Engineering, University of Natal, Durban 4041,
South Africa

ABSTRACT
Although fibre composite materials have shown great promise in many engineering
applications, the medical community has been slow to accept and research their
possibilities. The suitability of fibre composites as an alternative to the current titanium
and stainless steel alloys used for the manufacture of intra-medullary nails has been
investigated. These nails are used to pin serious femoral fractures. Biomechanical
loading and stresses as well as current metallic nail designs were studied, and a new
design in carbon fibre has been proposed. This design has been modelled using various
Finite Element packages.

INTRODUCTION
Fibre composite materials are not new to engineering applications, and have been
available since the Second World War. Although they were initially championed as the
new generation of materials, which would replace metals, it wasn't until the 1970's and
80's that they gained acceptance. This change was mainly as a result of the leisure
industry, which was quick to exploit the simple manufacturing processes, and good
corrosion resistance, which these materials offered.

The high strength to weight ratio, coupled with the good corrosion resistance of high
performance fibre reinforced polymers, has led biomechanics researchers to study the
possibility and advisability of using them in biomechanic applications and especially in
the area of surgical implants. The biggest single issue facing designers of these devices
and implants, is the cost. This is especially important in a third world country such as
South Africa, where the government is often forced to pick up the tab on any expensive
medical procedure.

Intra-medullary nails are an internal fixation device used to support unstable fractures of
the femur or thighbone. The intra-medullary canal in the centre of the bone is reamed
and a shaped column of metal is inserted. These nails have usually been made from
Titanium or stainless steel, and come in a wide variety of cross sections; from simple
circles, to octagons and even complicated cloverleaf designs, with hollow and solid
designs. The nail may be fastened to the bone using locking screws, or be of an
expanding design. The nail has to be able to support the forces on the femur as a result
of the patients body weight, and kinematic forces resulting from every day activities.
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The current nail designs have often proven to be too weak to perform this task,
especially if the fracture is severely comminuted, such as in an injury caused by a gun
shot. (See Fig. 1) The nails are then prone to fatigue failure as a result of the cyclical
nature of the loading. This coupled with the very high cost of the imported nails has
prompted the University of Natal into extensive research in the viability of producing a
local nail based on the titanium Huckstep design. At present, a hollow octagonal design,
in Stainless steel is undergoing final testing.

Il

Figure 1 X-Ray of Intra-Medullary nail inserted to support the femur of a gunshot victim.

A drawback of using stainless steel is that the elastic modulus is nearly four times that
of natural bone, this difference in the "stiffness" between bone and the implant are
undesirable. The problem is that any bending of the femur will cause micro-motion
between the bone and implant this damages the bone and leads to the development of
scar tissue. The bone being living will tend to reabsorb around the implant, as it
"detects" a region of high strength. This makes the use of glass or carbon fibre polymer
composites suitable for the intra-medullary nail, as their elastic moduli are similar to
those of the natural bone. As carbon can be absorbed by the body it may be possible to
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develop a nail, which can be reabsorbed by the body over time (Assuming the matrix
material is biodegradable as well). This would save the patient from a second operation
to remove the nail after the bone has healed

The loading on the femur is an area of great study and debate, as a result, a decision was
made to reverse engineer the current designs, thus the proposed design can be optimised
to be stronger than the current nails. Two finite element packages were used to study
firstly the current design and in particular the stainless steel design developed at the
University of Natal and secondly the proposed Carbon composite design. The results
from the first FE analysis were then compared to the physical testing performed on the
stainless steel design, this allowed a check to be performed on the FE packages.

LOADING AND BIOMECHANICS
The most critical part of any engineering design is determining the forces, which the
design must withstand. If the component to be designed is an orthotic or surgical
implant, the forces will predominately be biomechanical. Unfortunately, the
biomechaical forces on a human's legs are not fully understood, and there is a wide
range of opinion, and argument. In studying the feasibility of using fibre composites in
biomechanical applications, another method, which may be used, is to reverse engineer
the current designs. The proposed component can then be designed to be as strong or
stronger than the existing part.

Investigation revealed that there are two main approaches to the force question. Firstly
there is the biomechanics approach; this deals with the specific strength and forces on
the human body. Secondly there is the biokinetistist approach. This deals with the
relationship between forces and stresses and the corresponding specific motion. These
two methods often vary significantly both in the methods used as well as the results
obtained. A third method known as in vivo measuring produces the most useful results.
Implants such as intra-medullary nails or hip replacements are fitted with some form of
strain or load measuring devices. Michel et al (1995) used an intra-medullary nail to
study internal loads on the femur. GN Duda (1996) comments that the results obtained
are questionable, as they are not the results, which may have been obtained from a
healthy individual. (Michel et al implanted the nail in thirty-three year old male, with a
mid-shaft fracture of his left femur) The results obtained are as follows.

Loading. During healing. After the fracture had healed.

Torsional 2 - 5 Nm 2-5Nm

Bending Moments 18 - 22 Nm 4 Nm

Axial Force Up to 300 N

Shear Forces 60 - 80 Nm

Table I Internal Loads on the Femur (Duda 1996)
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There is considerable debate, as to whether an intra-medullary nail experiences higher
forces as a result of the reduced load carrying capacity of the femur, or whether this is
compensated for by the injured leg bearing less of the body weight. Although their
accuracy may be questioned these results are however very useful for the design of an
intra-medullary nail, as they represent a true case.

BIO-COMPATIBILITY AND CORROSION RESISTANCE
For an implant to be bio-compatible, it must contain no materials, which are toxic,
carcinogenic, or could cause an allergic reaction. Furthermore in order for a material to
be considered as a biomedical implant material, certain criteria must be satisfied,
including chemical, biological, and mechanical. It would be preferable to use a material
whose bio-compatibility has already been determined, as this will save on the expense
and time required for full bio-compatibility testing. Furthermore the human body is an
exceptionally corrosive environment; various solution testing is performed, often at
increased temperatures. In addition stress corrosion testing is vital, as all orthopaedic
implants are susceptible to SCC. Corrosion control is usually attained by one or more of
three methods, modification of the corrosive medium, and electrical protective method
or a surface coating / pre-treatment of the material. The first two are not possible or
practical in the case of a medical implant, this leaves the surface finish and or treatment.
Treatments can be applied to the surface to "coat" the nail, but can be easily damaged
during the insertion of the nail. The surface finish is very important, as imperfections
can allow "starting points" for corrosive attack. It is important to note that although
corrosion is usually something to be avoided, there are advantages in that intra-
medullary nails could be manufactured to be biodegradable. A nail could thus be
inserted and after the bone has fully healed, slowly dissolve.

ANALYSIS OF NAIL DESIGNS
The current metallic intra-medullary nail consists of a hollow parallel sided octagonal
cross-sectioned nail with locking screw holes drilled through it. The nail design was
modelled using Pro-Mechanica, (see Fig. 2) the results showed that the maximum stress
was found at the locking screw holes. This is consistent with studies of failed nails and
with fatigue tests of the nail design. On the basis of these results, and discussions with
doctors, the decision was made to change the design to one which did not require
locking screws. The hollow octagonal cross-section was kept, as it allowed a high
moment of inertia, while ensuring that there are still spaces between the bone and the
nail for fluid to flow. By choosing this design, the operation is simplified as additional
incisions and drilling of the bone is not necessary. If a "biodegradable" nail is used, the
nail could be anchored in place using a similar bone cement to that used to fasten
artificial hips in place. A hollow octagonal cross-sectioned nail without locking screw
holes was modelled on COSMOS/M. the nail was assumed to be constructed from
unidirectional carbon (as if manufactured by pultrusion). The maximum stress found
was to be nearly 30 times lower than that of the stainless steel design. This suggests that
the nail could be further reduced in thickness, and / or a lower grade of carbon fibre
used. Figures 3 and 4 show the stresses calculated by finite element analyses of the
current and proposed designi.
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Figure 2 Pro-Mechanica quarter model of existing stainless steel Intra-medullary nail.

CONCLUSIONS
The intra-medullary nail is a very complex device, the effect of being inserted into a
human body, produce a number of constraints, including size, bio-compatibility, and
corrosion resistance. The current metal nail cannot be simply constructed out of carbon
fibre, but rather a complete redesign is required. By designing a nail, which uses carbon
fibre as its reinforcement and a biodegradable matrix it would not need to be removed;
rather it would slowly be absorbed by the body, at a similar rate to the re-growth of
bone. This design also saves the patient and surgeon from a second operation. This
design would allow the use of nail without locking screws of any type, but rather would
be bonded into the medullary canal using an orthopaedic cement similar to those used to
bond artificial hips to bone. This approach offers the most significant advantages, as the
nail could be stronger than current metallic designs, however extensive research will be
necessary to determine the required rate of decomposition of the nail. Various matrix
materials should be studied and tested, both for bio-compatibility and decomposition
rate. Work is also needed to accurately determine the short- and long-term effects of
Carbon on the human body.

This study tends to suggest that the complexities involved with the current locking
screw intra-medullary nail, would not make a fibre-composite design more feasible than
the current metallic designs. The costs involved in overcoming problems such as
damage due to drilling, and manufacture of hollow nail with locking screw holes,
outweigh the advantage of using a material with properties similar to those of human
bone. A biodegradable approach shows far more promise, as it avoids most of the
problems inherent with the locking screw design. The simplified geometry, could be
manufactured by pultrusion, which would allow mass production and lower costs than
many other methods. Further testing and analysis will need to be performed however, to
confirm this result.
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Figure 3 Close up of stress on locking screw hole (current stainless steel design)
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Figure 4 Section-Plot of stresses in proposed Carbon Epoxy nail
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ABSTRACT

A method of using genetic algorithms linked to finite element analysis for fitness
testing to design for manufacture and optimise composite laminates with several
design variables is described. The plates used as examples of the method have eight
layers, and are symmetric about the midplane. Thus, the four fiber orientations and
laminae thicknesses are to be determined optimally. In addition, the fiber orientations
and layer thicknesses must be selected from a set of discrete (and easy to construct)
values. The method determines global optima, and has proven to be reliable and
accurate.

INTRODUCTION

It is well known that designs for structures to be constructed of fiber-reinforced
laminated composites can be tailored for additional advantage. Thus, for example,
by using the ply angles as design variables, and determining the optimal values to
maximise or minimise criterion like strength or mass, the most benefit can be obtained
from these materials. Due to manufacturing constraints, the sets of values from which
the ply angles and layer thicknesses can be selected are generally discrete, and in such
cases, the optimisation problem becomes one of finding the best combination of these.

An important failure mode for laminated structures is bending under transverse
loading. By selecting the layup configuration (ie. stacking sequence) optimally, the
deflection and mass of a structure can be minimised for a given design strength
constraint.

A common type of composite layup is the symmetrically laminated angle ply con-
figuration which avoids bending-stretching effects by virtue of mid-plane symmetry.
One phenomenon associated with symmetric angle-ply configurations is the occur-
rence of bending-twisting coupling which may cause significantly different results as
compared to cases in which this coupling is exactly zero [1]. The effect of bending-
twisting coupling becomes even more pronounced for few layers. Due to this coupling,
closed-form solutions cannot be obtained even for simple laminated plates, and thus
many studies involving design optimisation of composite structures have neglected
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the effect. The present study adopts a numerical approach to include the effect of

bending-twisting coupling, and determine the fitness of a candidate design which is
produced using a genetic algorithm.

Walker et al [23 carried out an optimisation design study of laminated plates with
the objective of minimising the deflection and weight, using finite element analysis
and the Golden Section method, but this was limited to only two design variables,

viz. fiber orientation and layer thickness. In addition, several reports have been
published which deal with optimisation of laminates for minimum deflection, or min-
imum weight. For example, angle-ply laminates subjected to uncertain loads were
considered by Adali et al [3] who used a convex modelling approach in their analy-

sis. The optimal design of symmetrically laminated plates under transverse loads was
given by Tauchert & Adibhatla [4] using the minimum strain energy criterion, and by
Quian et al [5] and Kengtung [6] using the minimum structural compliance criterion.

A maximum stiffness design for both symmetric and antisymmetric laminates was

considered by Kam & Chang [7]. Adali et al [8] investigated the minimum weight
and deflection design of thick sandwich laminates via symbolic computation.

Phillips & Gttrdal [9] and Triantafillou et al [10] detailed the optimal design of com-
posite panels and hybrid box beams, respectively. The former used analysis routines
in conjunction with, an optimisation package to provide design schemes for geodes-
ically stiffened minimum weight aircraft wing rib panels. Optimal weight design of
shells is considered by Min & de Charantency [11], who investigated sandwich cylin-
ders under combined loadings. A study by Ostwald [12] considered the combined
loading cases of external pressure and axial compression in the optimisation of thin
walled shells. The Bubnov-Galerkin method was used to solve the stability problem.

Genetic algorithms, which can be used to find the global solution of discrete opti-
misation problems, simulate the mechanics of natural genetics for artificial systems
based on operations which are the counterparts of the natural type [13]. They use
techniques derived from nature, and rely on Darwin's principle of survival of the
fittest. When a population of biological species evolves over generations, character-
istics that are useful for survival tend to be passed on to future generations, because
individuals carrying them get more chances to breed. Individual characteristics in
biological populations are stored in chromosomal strings. The mechanics of natural
genetics are based on operations that results in structural yet randomised exchange
of genetic information (ie. useful traits) between the chromosomal strings of repro-
ducing parents, and consist of crossover and occasional mutation of the chromosomal
strings. The reader is referred to Ref. 13 for further discussion of the standard genetic
operators and theoretical properties of GAs.

In order to demonstrate the use of GAs in the optimisation of laminated structures,
the design of fibre-reinforced plates are chosen here as examples. To determine the
best configuration, optimal ply angles for each layer are selected from amongst a
predefined set of fiber orientations, commonly used in industry. This approach leads
to cost-effective (and easy to construct) designs by virtue of allowing the use standard
composite plies. The most common orientations are 0', ±450 and 90' which are the
ones used in the present study. Previous work on discrete optimisation of composite

laminates include Refs 14 - 16.
This study considers t&e optimal design of symmetrically laminated plates for min-

imum deflection (viz. maximum rigidity) and minimum weight.. The ply angles are
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taken as the optimising variables for the minimum deflection design and the mini-
mum weight is then obtained using the Tsai-Wu failure criterion with the optimising
variables then becoming the individual layer thicknesses. Results are presented for
different loadings both symmetrical and unsymmetrical, and various combinations of
clamped, simply supported and free boundary conditions are considered. The effect
of aspect ratio on the minimum deflection and weight is also investigated.

BENDING OF RECTANGULAR LAMINATES

Consider a symmetrically laminated rectangular plate of length a, width b and
thickness h under a transverse bending load q(x, y), as shown in Fig. 1. The plate is
located in the x, y, z plane and constructed of an arbitrary number K of orthotropic
layers of thickness hk and fibre orientation Ok where k = 1, 2, ... , K. The displacement
of a point (x0, y0, z0) on the reference surface is denoted by (u°, v0 , w°).

The governing equation for the deflection w in the z direction under a transverse
load q is given by [17]:

Dllw,xx +4D16w,xxxy +2(D 12 + 2D 66)w,xxyy + 4 D26W,xyyy +D 22w,yyyy = q (1)

where variables after the comma denote differentiation with respect to that variable,
and

f h/2 i, 2=]• Q-/2.¢j z dz (2)

are the bending stiffnesses and ij are components of the transformed reduced stiff-

ness matrix for the k-th layer.
As no simplifications are assumed on the elements of the [D] matrix, equation (1)

includes bending-twisting coupling as exhibited by virtue of D16 : 0, D 26 : 0.

FINITE ELEMENT FORMULATION

We now consider the finite element formulation of the problem [18]. Let the region

S of the plate be divided into n sub-regions Sr (S, G S; r = 1, 2, ... , n) such that

=(u) r=Isr(U) (3)
r=1

where UI and IISr are potential energies of the plate and the element, respectively,
and u is the displacement vector. Using the same shape functions associated with
node j (j = 1, 2, ..., n), Sj(x, y), for interpolating the variables in each element, we
can write

n
U ES(,YU (4)

j='

where uj is the value of the displacement vector corresponding to node j, and is given
by
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The displacements {u, v w, 11, 02} are approximated as

n n

u = Z:ujPj(X'y), v=EZvj~b(x'y), w=Ewjvpj(x,y)
j=1 j=1 j=l

n

Z Sj'k(X ,y), 02 = S b5(xy) (6)
j=1 j=1

where V, are Lagrange family of interpolation functions. From the equilibrium equa-
tions of the first order theory, and equations (6), we obtain the finite element model
of the first-order theory,

5 nEE °' A" -F= 0, =( , 2, ..., 5) (7)
I3=lj=l

or

[K] {A} - {F} = {0} (8)

where K and F are the stiffness and force coefficients respectively, and the variable
A denotes the nodal values of w and its derivatives.

STACKING SEQUENCE CODING FOR GENETIC ALGORITHMS

In its standard form, application of the operators of the GA to a search problem
requires the representation of design variables in terms of bit strings that are coun-
terparts of the natural chromosomes. In specialising genetic algorithms for laminate
stacking sequence design, the first departure from the classical problem formulation
is in design variable coding. Since laminates are generally built from 0', ±45' and
90' plies, it is convenient to replace the binary coding with a higher alphabet. In
addition, for balanced laminates we require a +45' ply to be paired a -45' ply, there-
fore, the coding can be simplified by rising stacks of two plies each as the basic
building blocks. Thus, the four possible stacks are: 00 coded as the integer 0, -45zo
coded as 1 with +450 as 2, and 90' coded as 3. For example, the symmetric lam-
inate [90"/+45`/90`/0'/-45'/0'] is coded as 3 2 3 0 1 0. The rightmost character

corresponds to the layer closest to the plane of symmetry.

Genetic Operators
Basic operators used to create successive improved populatioris include selection,

crossover, mutation, and interchange. Typically, two designs selected from a pop-
ulation are mated to create child design(s). In order to ensure that good designs
propagate to the child populations, a higher chance to be selected as parents is given
to those designs that are better than the rest of the population. Selection is the part
of the algorithm that provides better opportunity to good designs by implementing
a roulette wheel which is divided into slices representing different designs. Those de-
signs with better characteristics are given a proportionally larger slice of the wheel.
When the wheel is spun (simulated by using a random number generator between
0 and 1, where the circumference of the wheel is normalized to be 1), those designs
that occupy larger slices of the wheel have a better chance to be chosen as parent
designs.
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When maximizing some value this is ideal but minimization requires an inversion
function of some sort. The following was used for an inversion function:

Let Fi = Fitness for individual i, where i = 1, 2,3, ..I
Let F, max = max Fi where Fim, is constant
Then Fi new = Fi(S/R)

whereI I

S = 1F, and R P (Fimax/Fi) where i = 1, 2,3,... I
i=-I i---1

Crossover operator: Once a pair of parents are selected, the mating of the pair
also involves a random process called crossover. This is achieved by generating a
random integer k between 1 and L - 1, where L is the string length. This number
defines a cutoff point in each of the two strings, and separates each into two substrings.
By splicing together the left part of the string of one parent with the right part of
the string of the other parent a child string is generated. Consider, for example, two
symmetric laminates coded in a string of length L = 9, and a crossover point k = 5

parent 1: 0 0 1 2 1113 1 1 [0O/0//-450/450/-450/90//-450/-4501],
parent 2: 0 2 0 2 1112 3 2 [0°/45o/0°/45°/-45°/450/90'/45o],.
The two possible child designs are
child 1: 0 0 1 2 1 2 3 2 [0'/0'/-45'/45o/-45°/45'/90'/450]s,
child 2: 0 2 0 2 1 3 1 1 [0-/450/0"/450/-45-/900/-450/-450]s.
One or both of the child designs are then selected for the next generation.
Mutation operator: Mutation is implemented by changing, at random, the value

of a digit in the string with small probability, and served for the purposes of avoiding
premature loss of diversity in the designs. Since inferior designs may have some
good traits that can get lost in the gene pool when these designs are not selected as
parents, by introducing occasional mutations, different portions of the design space
can be investigated for valuable information.

Consider this example:
Suppose a representation
Individual 1: 0 0 1 2 1113 1 1 - is found to yield a better value when a 3 is

introduced in position 8, but no genes in the population exist with a 3 in position 8,
then mutation may lead to an introduction of this particular kind.

OPTIMAL DESIGN PROBLEM

The objective of example design problem is to minimise the maximum deflection
Wmax(X, y) and then the weight W of the laminated plate. The minimum deflection is
achieved by optimally determining the fibre orientations, given by [01/02/... /Oi],ym.

The first part of the design problem may thus be stated as:

A
Wmin = min [wma,(0)1, 0 E 00,) 450,900 (9)

0

where
Wmax(0) = max w(x, y; 0) (10)

X;y

Here, the maximum deflection wmax is determined from the finite element solution of
the problem given by (8).

The second part of the design problem involves minimising the laminate thickness
H subject to a failure criterion. In this study, the Tsai-Wu failure criterion [191 is
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used which stipulates that the condition for non-failure for any particular ply is

S (k)(k) (k) (k)(-F,(k)) (k) (k) (k)F(O) = F11 or a~k + F,2 r o, 2 + JF66r 1  +1 ±2F ao 0' +Flo,,j +F'2o-S1 "1 O1 -- 22 2 2 66 12 "12 -- • 12°l u ] •

(11)
where the strength parameters F11 , F2 2 , F66 , F12 , F1 and F2 are given by

F11 = 1/(XtXc); F2 2 = l/YtK); F6 6 = 1/G 2  (12)
1

F1 = 1/Xt - 1/X; F2 = 1/Yt - 1/Yc; F12 = - F11 F2 2  (13)

and Xt, Xc, Yt, Yc are the tensile and compressive strengths of the composite
material in the fibre and transverse directions, and G is the in-plane shear strength.

The second part of the problem may thus be stated as

Wmin = min W(Oopt) (14)

H

subject to constraint (11), which is evaluated for all plies.
In addition, a further constraint is added: the thickness of each layer must be a

multiple of a minimum feasible dimension. For example, if a standard ply thickness

is 0.0017n, then each individual layer should have thickness 0.001k, where k C Z (and
Z $- 0). Thus, the second part of the optimisation is then also reduced to a discrete
value problem, and solved using a GA.

In summary, the first optimisation procedure involves the stages of determining the
maximum deflection Wma(X, y) for a given configuration and improving the fibre ori-
entations to minimise wmn,, while the second optimisation stage involves evaluating
F(O) using eqn. (11), with the various stresses required in calculating F(O) deter-
mined using the finite element method for a given H, and improving the laminate
thickness to minimise the weight.

This step may be described explicitly as

IninIF(Opt)- 1 (15)H

in order to minimise thickness.

Thus the computational solution consists of successive stages of analysis and op-
timisation until a convergence is obtained and the optimal configuration and then

Hmin is determined.

RESULTS

Preliminary numerical results are given for a typical T300/5208 graphite/epoxy
material with E1 = 181 GPa, E 2 = 10.3 GPa, G 12= 7.17 GPa and V12 = 0.28. The
symmetric plate is constructed of eight layers with [01/02/03/O4asym. Different com-
binations of free four edges of the plate. In particular, four different combinations are
studied, namely, (F,S,F,S), (F,S,C,S), (S,S,S,S) and (C,S,C,S), where the first letter
refers to the first plate edge, and the others follow in the anti-clockwise direction as
shown in Fig. 1.

The results presented in this section are obtained for rectangular plates with aspect
ratios varying between 0.5 and 2.
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Table 1 shows the influence of the boundary conditions on the optimal design of
a plate with a/b = 1 (viz. each side is 1m long) and with a uniformly distributed
load covering the entire plate surface, of magnitude 2.5xlO5 Pa. The table shows
the optimal layup which maximises the stiffness in column 2 for each plate, and
the optimal layer thickness in column 3 (where, for example, 1,2,1,3 means layer 1
has thickness 1mm etc). As the number of degrees of freedom decreases, so the plate
becomes stiffer and the maximum deflection and the optimum weight decrease. Thus,
the (F,S,F,S) plate has a total thickness of 14mm, while the (C,S,C,S) plate has a
thickness of 12mm.

Table 2 shows the influence of the aspect ratio on the optimal layup and thickness
for (S,S,S,S) plates with the same loading as before. It can be seen that as the aspect
ratio increases, so the plates become less stiff, and thus the total thickness increases.
In addition, as a/b increases, so the optimal layup changes from (0°/0'/00/00), to
(90°/900/900/900),.

CONCLUSIONS

A method of using genetic algorithms linked to finite element analysis for fitness
testing to design for manufacture and optimise composite laminates with several
design variables is described. The objective is to maximise the structural rigidity,
and minimise the mass, within the bounds of the Tsai-Wu Failure criterion. The
plates used as examples of the method have eight layers, and are symmetric about
the midplane. Thus, the four fiber orientations and laminae thicknesses are deter-
mined optimally. In addition, the -fiber orientations and layer thicknesses are selected
from a set of discrete design problem ideal for the application of GAs. The method
determines global optima, and has proven to be reliable and accurate.
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Boundary Layup Layer Thickness
Conditions (01/02/03/04)S (x I 0"m)

(tI/t2/t3/t)s

(F,S,F,S) ..- 45 450 450 450 1,2,1,3
(F,S,C,S) 900 900 900 900 1 ,2,1,3

(S,S,S,S) -450 450 45450 4 1,1,4,1
(C,S,C,S) 900 900 900 900 2,1,2,1

Table 1. Results for plate with a/b = 1.0 and UDL = 2.5 x 10' Pa.

Aspect ratio Layup Layer Thickness
(a/b) (01/02/03/04). (x 1 O'm)

(tI/t 2 /t3 /t4)
0.50 00000000 1,2,1,1

0.75 .. 450 450 450 450 1,3,1,1
1.0 .. 450 450 450 450 1,1,4,1

1.50 900 900 900 900 1,3,4,1
2.0 900 900 900 900 2,2,1.4

Table 2. Results for (S,S,S,S) plates with various aspect ratios
and UDL =2.5 x 105 Pa.

z
Y

T x
Fig 1. Configuration of the laminated plate.
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ABSTRACT

A procedure to optimally design laminated plates for a specific cyclic life using a
cumulative damage rule constraint is described. The objective is minimum weight,
and the design variables are the fiber orientation, and the plate thickness. The plates
are subjected to cyclic bending loads, and the finite element method, in conjunction
with the Golden Section routine, is used to determine the design variables optimally.
The FE formulation is based on Mindlin theory for thin laminated plates and shells,
and the formulation includes bending-twisting coupling. In order to demonstrate the
procedure, several plates with differing events, aspect ratios and boundary conditions
are optimised, and compared.

INTRODUCTION

The use of laminated composite materials in structural applications has increased
dramatically in the last quarter of the twentieth century, particularly in the marine
and aerospace industries (Jones - 1975). This is mainly due to the high strength-to-
weight and stiffness-to-weight ratios these materials afford. Many composite struc-
tures are routinely subjected to cyclic loading regimes, and though the applied stresses
may be low, failure can occur due to fatigue.

Damage occurs during each cycle of fatigue loading, and worsens as the number
of cycles increases, because it is cumulative. Eventually the damage may exceed the
limit a material can handle. At this point, fatiguing, one of the most common forms
of failure, takes place.

Various researchers have investigated the behaviour of laminated composites under
static and dynamic loads (eg. Refs 1 & 2), and cyclic loads (eg. Refs 4, 6, 8 & 12).
Most of these fatigue studies are experimental, and have added to the understanding
of the mechanisms involved in the fatiguing of composites. Some have even developed
design methodologies, and an extensive list of these can be found in a paper by
Nyman (1996) which also describes a simplified fatigue design approach. None the
less the amount of work reported in the literature concerning procedures for optimally
designing laminated composite structures under fatigue loads is small.

*Centre for Advanced Materials, Design & Manufacture Research

287



In terms of design optimisation, Adali (1985) used an approach described by Rotem
and Hashin (1976) to optimally design laminated plates subjected to cyclic in-plane
loads, with the objective of mininising the weight. The formulation used is analytical,
and thus limited in its application.

One phenomenon associated with symmetric angle-ply configurations is the occur-
rence of bending-twisting coupling which may cause significantly different results as
compared to cases in which this coupling is exactly zero (Walker et al - 1995). The
effect of bending-twisting coupling becomes even more pronounced for laminates with
few layers. Due to this coupling, closed-form solutions cannot be obtained for any of
the boundary conditions and this situation led to neglecting bending-twisting cou-
pling in design studies. In actual fact, closed-form solutions for symmetric laminates
are not available even for the simplified models where this coupling is neglected ex-
cept if the boundary conditions are simply supported all around. The present study
adopts a numerical approach to include the effect of bending-twisting coupling and
to obtain the optimal design solutions for a variety of boundary conditions.

Optimisation of composite plates for a given fatigue life is necessary to realise
the full potential of fiber-reinforced materials. The procedure described here is used
to optimally design laminated plates which are subjected to fatigue loading for a
specific cyclic life using a damage rule constraint. The objective is minimum weight,
and the design variables are the fiber orientation, and the plate thickness. The plates
are subjected to cyclic bending loads, and the finite element method, in conjunction
with the Golden Section routine (Haftka and Gtirdal - 1992), is used to determine the
design variables optimally. The finite element formulation is based on Mindlin theory
for thin laminated plates and shells, and the formulation includes bending-twisting
coupling. In order to demonstrate the procedure, several plates with differing events,
load magnitudes and type, aspect ratios, boundary conditions and cyclic lives are
optimised, and compared.

CUMULATIVE DAMAGE THEORY

Service operation at any given cyclic stress amplitude produces fatigue damage
(which is assumed to be permanent), the seriousness of which will be related to the
total number of cycles that would be required to produce failure of an undamaged
component at that stress amplitude. The method adopted in this study is a linear
cumulative damage method based on Miner's rule. To have a better understanding
of the general theory, first consider the following example:

Assume that operation at several different stress amplitudes S1, S 2 , ... , St in se-
quence for a number of cycles n1 , n 2 , ... , nt will result in an accumulation of total
damage equal to the sum of the damage increments accrued at each individual stress
level. Then if operation at a stress amplitude S produces complete damage (or
failure) in NI cycles, operation at stress amplitude S1 (event 1 - in the following
development each one of the different load level operations, which may consist of a
number of cycles, is called an event) for a number of cycles ni smaller than N 1 will
produce a smaller fraction of damage, say D1 . Factor D, is termed a damage fraction
(or usage factor). Operation over a spectrum of different stress levels results in a
usage factor Di for each of the different stress levels S1 in the spectrum. When these
factors sum to unity, failure is predicted; viz:
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D , + D 2 + .. + Di *2_ 1 (1)

The linear damage rule states that the damage fraction, D1, at stress level S1 is
equal to the cycle ratio ni/Ni. Thus, the damage fraction D due to one cycle of loading
is 1/N. In other words, the application of one cycle of loading consumes 1/N of the
fatigue life. The failure criterion for variable amplitude loading can now be stated as

Thl n2 nlj
"n"!2+ . +a > (2)

ANALYSIS PROCEDURE FOR CYCLIC LOADING

After defining a design fatigue curve (S-N curve), the stresses at the nodes through-
out the FE plate model are determined. Next, the partial usage factor Di for the i-th
alternating stress intensity is evaluated in that list by evaluating the cycle ratio ni/Ni
(as its equivalence). The i-th alternating stress intensity is formed by the combina-
tion of loadings AE and BF, where E and F are the corresponding events. Here, ni
corresponds to the lower number of cycles interpolated from the design fatigue curve
(S-N curve).

After evaluating the partial usage factor Di, the updates are made to the alternating
stress intensity list by reducing the number of cycles of both events E and F by ni.
Consequently, one of the two events E or F will be eliminated (or both if E and F
have the same number of cycles) and the other event will have ni cycles less in the
later calculations. Elimination of an event results in elimination of the corresponding
loadings. Once a loading is eliminated the corresponding stress intensities (formed
by combination of that loading with other loadings) will also be eliminated from the
list. After updating the list, the next alternating stress intensity in the list is checked
and the corresponding partial usage factor evaluated, added that to the cumulative
one and the list updated. This procedure is repeated for the next alternating stress
intensity in the list and continues until all stress intensities are considered.

For any alternating stress within the stress range S, and S2 (the first and last
points) of an S-N curve log-log interpolation is used to find the corresponding cycles.

OPTIMAL DESIGN PROBLEM

The objective of the design problem is, for a given specific fatigue life (consisting
of several events), to minimise the maximum damage Dmý,(x, y) and then the weight
W of the plate by minimising the thickness h subject to a cumulative damage law
constraint. Minimising Dmx(X, y) is achieved by optimally determining the fiber ori-
entations given by Ok = (--)k+10 for k < K/2 and 0 k = (-I)ko for k > K/2 + 1 in
order to minimise the maximum cumulative stresses (and thus damage) which occur
during loading events.

Thus, the first part is stated as

DmIn m. m min [Dmax(0)], 00 < 0 < 90' (3)- 0

where
D,,ax(O) ( max D(x,y;0) (4)

28y
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The second part of the design problem involves minimising the laminate thickness
h within the constraints of the a damage rule, and may be stated as

hmin = min h(0opt) (5)
h

The nodal stresses and subsequently the remaining life ni (which is interpolated
from the S-N curve) and thus the maximum damage Dmax are determined from the
finite element solution of the problem. The first optimnisation procedure involves the
stages of determining the maximum damage Dmax(x, y) for a given 0 and improving
the fiber angle to minimise Dm,,. The second optimisation stage involves evaluating
D(O9pt) for a given h and improving the laminate thickness to minimise the weight.
This step may be described explicitly as

min ID(0,pt)- 11 (6)
h

in order to minimise the thickness. Thus the computational solution consists of
successive stages of analysis and optimisation until a convergence is obtained and the
optimal fibre angle 0 opt and then hmin is determined within a specified accuracy. In
both optimisation stages, the Golden Section method is employed firstly to determine
Oopt and then hmin.

NUMERICAL EXAMPLES

For the purpose of illustrating the method described, numerical results are given
for a typical T300/5208 graphite/epoxy material with E1 = 181 GPa, E 2 = 10.3
GPa, G 12 = 7.17 GPa and v12 = 0.28 (Tsai - 1987). The symmetric plates studied
here are constructed of four equal thickness layers with 01 = -02 = -03 04 =
0 and for design purposes, the S-N curve of Fig. 2 is specified (Dorey - 1990).
Different combinations of free (F), simply supported (S) and clamped (C) boundary
conditions are implemented at the four edges of the plates. In particular, the different
combinations studied are (F,S,C,S), (S,S,S,S) and (C,C,C,C), where the first letter
refers to the first plate edge, and the others follow in an anti-clockwise direction as
shown in Fig. 1. Also, the plates are subjected to uniformly distributed transverse
bending loads of magnitude P Pa, which are applied cyclically (and fully reversed).

The dependence of stresses and thus the damage D on the fibre angle 0 is illustrated
in Fig. 3, for a (F,S,C,S) plate and (C,C,C,C) plate, both having a/b = 1. The plates
are subjected to the first loading regime or event shown in Table 1 below (viz. the
load of 100 000 Pa is applied and then removed 50 000 times). The (F,S,C,S) plate has
h/b = 0.0074, while the other has h/b = 0.0042. This demonstrates that the damage
is indeed dependant on the fiber orientation, and it is clear that the minimum damage
for a laminate can be several times lower than the damage at other fibre angles. In
addition, the plate thickness can be determined optimally, such that the plate is
designed for a particular cyclic life. This fact emphasises the importance of carrying
out optimization in design work of this nature to obtain the best performance of fibre
composite plates.

Event Load (Pa) Cyclic Life
1 100 000 50000
2 200 000 25 000
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Table 1. Loading vs. life for the two events

Example 1: Plates with differing events
Consider a (C,C,C,C) plate with a/b = 2. The plate is subjected to the first loading

regime or event shown in Table 1 , and should fail at the end of the last cycle of that
event. Thus, the plate must be designed such that 0 and h are selected optimally to
ensure minimum weight and sufficient life.

The result is compared to that for a similar plate (plate no. 2) which is subjected
to both events shown in Table 1.

Plate opt hmin/b x 10-3
1 900 4.50

2 450 7.69
Table 2. Optimal designs for plates subjected to differing events

As expected, the plate which is subjected to both events has a minimum thickness
which is approximately 40% more than the plate which is designed optimally to
endure the first event only.

Example 2: Plates with differing aspect ratios
In order to demonstrate the effect of a/b on the results, two plates with different

aspect ratios were optimally designed. The boundary conditions implemented along
the edges of each plate is (C,C,C,C), with the first having a/b = 1.25, and the second
a/b = 2 (the standard plate of example 1). The plates are subject to both events.

a/b Oopt h.i./b x 10-
1.25 900 6.15

2 450 7.69
Table 3. Optimal designs for plates with differing aspect ratios

The plate with the larger aspect ratio ends up with a minimum thickness which
is approximately 20% greater than the smaller plate after the process of optimally
designing is completed. This is expected, since the smaller plate is stiffer.

Example 3: Plates with differing boundary conditions
In order to demonstrate the effect of the boundary conditions on the results, three

plates, each of aspect ratio a/b = 1.75 but with differing boundary conditions were
optimally designed. The first is clamped along all four edges, while the second is sim-
ply supported along all four edges. The third plate has a combination of free, simply
supported and clamped boundary conditions, viz. (F,S,C,S), and all are subjected to
the first event only.

Boundary Conditions Opt hmi/b x 10-3
(C,C,C,C) 900 4.48
(SsSS) 87.70 6.02
(F,S,C,S) 26.90 9.93

Table 4. Optimal designs for plates with differing boundary conditions
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As the number of degrees of freedom of a plate is curtailed along the boundary,
so it becomes stiffer. For this reason, the (F,S,C,S) plate is 26% thicker than the
(S,S,S,S) plate, and 55% thicker than the (C,C,C,C) plate, as can be seen from the
results in Table 4.

CONCLUSIONS

A procedure for optimally designing laminated plates for a specific cyclic life using a
damage rule constraint is described. The objective is minimum weight, and the design
variables are the fiber orientation, and the plate thickness. The plates are subjected
to cyclic bending loads, and the finite element method, in conjunction with a search
routine is used to determine the design variables optimally. The FEM formulation is
based on Mindlin-type laminated plate theory. The numerical approach employed in
the present study is necessitated by the fact that the inclusion of the bending-twisting
coupling effect and the consideration of various combinations of free, clamped and
simply supported boundary conditions, rule out an analytical approach. It must be
emphasised that different damage rules may be used, and that the one chosen in this
study is used merely to demonstrate the procedure.

The effect of partial optimisation on the damage was investigated by plotting D
against the first design variable 9 for a given plate thickness (Figure 3). The results
show that the difference in the damage of optimal and non-optimal plates could be
quite substantial, emphasising the importance of optimisation for fiber composite
structures.

In order to demonstrate the complete procedure described in this paper, several
plates are then completely optimised, such that both the fiber angle and plate thick-
ness are determined optimally. The plates have differing events, aspect ratios and
boundary conditions, and the optimal design of each is compared to the others. Such
differences result in differing optimal designs, thus emphesising the importance of
optimisation in every case.

CLOSURE

When the plates described by the results depicted in Fig. 3 are fully optimised,
the results are as follows:

Boundary Condition Opt hmin/b X 10-

(F,S,C,S) 00 6.62
(C,C,C,C) 450 4.15
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Fig 1. Configuration of the laminated plate.
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ASPECTS OF STRUCTURAL DESIGN AND MANUFACTURE OF

AN ALL COMPOSITE MOTORGLIDER WING

W. M. Banks and J. A. Russell

Dept of Mechanical Engineering
University of Strathclyde

Montrose Street
Glasgow GI 1XJ Scotland UK

ABSTRACT

There is currently a widespread demand for a personal light aircraft. This demand has been
partially met by the Europa Aircraft Company Ltd in the supply of what is called 'The
Europa'. This aircraft is a low wing monoplane of composite construction. The aircraft has
been designed to meet the Joint Airworthiness Requirements (JAR) for very light aircraft.
The requirements have had to be met in respect of stability, handling and overall structural
integrity. In the case of "The Europa", the primary composite structures are manufactured by
the company. However the aircraft is supplied as a series of kits to be assembled by the
customer.

The paper covers some aspects of the structural design and manufacture of an all composite
retrofit motor glider wing. This wing has to accommodate the current structural make-up of
the light aircraft air frame. Particular attention is paid to designing for the most unfavourable
aerodynamic loads acting on the glider wing. A review of these loads has led to a more
detailed examination of the wing profile and make-up and, in particular, an analysis of the
wing skin, the rib and the overall spar. In the latter case the spar strength is of particular
concern and importance.

The analysis thus undertaken ultimately leads to a material selection process for the
appropriate parts of the wing details including the skin, ribs and spar. It involves 'composite
superfactoring'. This is reviewed in detail. Attention is paid to its overall influence on the
final material choice.

INTRODUCTION

The purpose of the work presented in this paper was to design a prototype glider wing as a
direct replacement for the standard wing employed by "The Europa" light aircraft. Although
not a fully certified aircraft component, the proof of concept glider wing structure was
designed to meet the utility category requirements of JAR-22. Planform geometry was
defined by Europa Aircraft's aerodynamicist. The following engineering constraints had to
be met.

"* minimum changes to the existing Europa light aircraft fuselage
"* commonality of airframe coupling mechanism
"* commonality of materials and construction techniques
"* glider wing must be capable of being assembled within a standard car garage by the non-

specialist
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* glider wing must be capable of being shipped in component form within a six metre
container

The main factors which govern the choice of materials and structural design is the ratio of the
applied loads to the dimensions of the structure. In order to determine the applied loads, it is
necessary to examine the nature of the aerodynamic loads acting on the glider wing.

AERODYNAMIC LOADS

The greatest aerodynamic loads on any aircraft come from the generation of lift during high-
g manoeuvres. The aircraft load factor (n) expresses the manoeuvering envelope of an
aircraft as a multiple of the acceleration due to gravity. At lower airspeeds the highest load
factor an aircraft will experience is limited by the maximum lift available from the main
wing, which in turn is a function of wing area and profile shape. At higher airspeeds the
maximum value of load factor is limited to a value based upon the expected use of the
aircraft during normal operations. This load factor is defined as the limit load factor. For
"The Europa" glider aircraft, the limit load factors for both low and high speed cases is
defined within the relevant standards. "The Europa" glider aircraft was sized to meet the
utility category of the standard JAR-22. This resulted in the limit load factors of +5.3g and -
2.65g for the low speed case, with +4.Og and -1.5g being the limited load factors for the high
speed case. These values can be plotted on a chart known as the V-N diagram.

Conditions A and D
The V-N diagram depicts the aircraft limit load factor as a function of airspeed and defines
the 'flight envelope' for the aircraft. In order to determine the strength of any wing structure,
two critical conditions on the flight envelope require considerable investigation. The first
condition exists at VA, the aircraft manoeuvring speed. This condition represents the slowest
speed at which the maximum limit load factor can be reached without stalling the wing. This
part of the flight envelope requires investigation because the load on the wing is
approximately perpendicular to the flight direction; not as might be thought, perpendicular
to the fuselage horizontal datum. At this condition (Condition A) the wing presents a very
high angle of attack to the airflow. The load direction will be forward of the aircraft fuselage
vertical datum, causing a forward load component on the wing structure. If the wing was not
stressed to meet this condition, the wings could fail by shedding forward in flight. The
combination of high angle of attack and maximum load factor results in the wing skins
experiencing the highest torsional load within the aircraft flight envelope.

The second critical condition requiring investigation occurs at VD, the aircraft dive speed.
This condition (Condition D) at the extreme right hand side of the aircraft flight envelope,
represents the point where maximum dynamic pressure and maximum limit load factor
coincide. This condition is important for structural sizing of the wing spar. At Condition D
the wing is at a low angle of attack because of the high dynamic pressure, so the load is
approximately perpendicular to the fuselage horizontal datum. The combination of dynamic
pressure and maximum load factor results in the wing spar experiencing the highest bending
load within the aircraft flight envelope.

Conditions A and D above ignore the effect of very strong gusts acting on the aircraft. It is
true that the loads experienced when an aircraft encounters a strong gust can exceed the limit
manoeuvring loads evaluated at Conditions A and D. However the load experienced by the
gust depends on the gust penetration speed location on the V-N diagram. By reducing the
aircraft gust penetration speed the gust g load can be tailored to coincide with the limit
manoeuvring factor load of +5.3g. By making the gust factor coincident with the
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manoeuvring limit load factor there is also the added benefit of reduced aircraft weight as
less substructure is required to resist transient peak bending loads experienced during the
gust. These loads would have been greater than those experienced at VA or VD. With the
V-N diagram for "The Europa" glider aircraft defined, the actual loads and load distributions
acting on the wing surface can be determined. For the glider wing aircraft this only needs to
be done at Conditions A and D. It is therefore necessary to conduct two separate static
strength tests in order to fully represent the loads acting on the glider wing at Conditions A
and D.

Stability and control calculations
Initially stability and control calculations are conducted to determine the required lift on the
horizontal tailplane to balance the wing pitching moment at VA and VD. The stability
calculations are approximated by summation of the wing and tailplane moments about the
most forward position of the aircraft centre of gravity. A simple approximation made within
JAR-22 is to assume that 5% of the lift produced by the main wing can be generated as a
balance load by the horizontal tailplane. The horizontal tailplane load is then added to the
main wing lift to give the balance lifting load acting on the wing.

With the balanced lifting load known, the spanwise and chordwise lift distributions can be
determined. From classical wing theory, on an elliptical planform wing the spanwise lift
distribution is of an elliptical shape. A semi-empirical method for determining the spanwise
lift load is known as Shrenk's approximation. This method assumes that the load
distribution on an un-twisted, non-elleptical planform such as "The Europa" glider wing, has
a shape that is the average of the actual planform shape and an elliptical shape of the same
span and area. The total area under the Shrenk lift load curve then must be equal to the
balance lifting load. With the spanwise load distribution defined, the main wing shear and
bending stresses can be determined at both Conditions A and D.

Torsional stresses
To determine the wing torsional stresses, in particular those at Condition A on the flight
envelope the airfoil moment coefficient is applied to spanwise strips and the total torsional
moment is summed from the wing tip to the wing root. The torsional stresses experienced by
the wing depend heavily on the chordwise position of the wing centre of pressure, and the
location of the wing flexural centre. On the Europa glider wing aircraft the wing flexural
centre was assumed to act at the spar location which is approximately 40% chord.

The chordwise position of the centre of pressure varies with angle of attack. This results in
the necessity to examine the chordwise distributions at both Conditions A and D on the flight
envelope.

COMPOSITE SUPER FACTORING

A safety factor of 1.5 is always used when sizing any aircraft structural component. This
factor defines ultimate load, where ultimate load = limit load * 1.5. The aircraft structure
must be able to support ultimate load for three seconds without failure. The use of composite
materials means the use of additional factors of safety to account for the effects of moisture,
temperature, and manufacturing variability. Multiplying these factors together results in a
'composite super factor' of 1.5. For "The Europa" glider wing, sized to meet the utility
category of JAR-22, the resulting limit load of 5.3g becomes:

+5.3*(composite super factor)* 1.5(factor of safety) 12g.
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This approach accounts for degradation of the composite material over the lifespan of the
aircraft. It does not mean that "The Europa" glider wing is fully acrobatic, because the
placarded maximum permissible limit g loading is still +5.3g. This approach equates to an
equivalent aluminium glider wing with a resultingultimate g load of

+5.3 * 1.5 (factor of safety) = 7.95g.

Even with extensive material testing of moisture conditioned pre-preg composite specimens
at elevated temperature, the composite super factor would only reduce from 1.5 to 1.2.
Unfortunately superfactoring can lead to heavier wing structures, or in some cases failures in
metallic components not strength checked to meet the super factored loads.

DETAILED STRUCTURAL CONSTRAINTS

With the wing spanwise and chordwise load distributions defimed, the wing spar bending
stresses, and the skin torsional stresses can be determined. By choosing composite materials
common with the Europa light aircraft wing, these stresses are then factored with the
composite super factors, and the safety factor of 1.5.

Aspects of the detailed structural design of the standard light aircraft that are common with
the glider wing can now be investigated in more detail. Three key areas of the glider wing
design must maintain commonality with the light aircraft wing. These structural constraints
are now considered in detail.

The wing spar housing cross sectional geometry within the Europa fuselage
The proximity of the seatback bulkhead in relation to the main fuel tank and aileron coupling
mechanism restricts wing spar width. The spar depth is restricted by the location of the wing
on the fuselage side. This limits the depth of the spars at the point of maximum bending
loads at the outer most spar pin. Analysis of the bending stresses developed by the wing at
both Conditions A and D on the flight envelope yield the peak values of load at the point of
maximum bending. The cross sectional area of the spar boom at this point drives the spar
material choice. The upper spar boom is particularly critical as it supports compressive loads
due to spar bending. Unidirectional CFRP rovings with a compressive failure strength of
900MN/m 2 was eventually chosen for the upper and lower spar boom. The shear stresses
experienced by the spar are also a maximum at the spar pin location. Satin weave bi-
directional GRP shear webs, oriented at ±45 degrees to the spar, were used to transmit shear
from one spar cap to the other. This was achieved in practice by staggering the number of
shear web plies to match the shear stress gradient developed along the span of the wing spar.
The excellent drapability of this cloth is used to dimensionally control the cross section of
the spar.

The wing spar coupling mechanism
The wing spar coupling mechanism design employs two 10mm pins which locate within both
wing spars through the cockpit seatback. Analysis of the wing spar coupling by hand
calculation, in conjunction with previous static strength tests conducted on the light aircraft
wings revealed that the failure mode of the wing spars is by spar buckling between the two
spar pins. This mode of failure was aggravated by the single shear overlapping nature of the
coupling mechanism. The spar pins were restricted from being put into double shear due to
the spar housing cross sectional geometry constraint. An initial solution employed to prevent
the onset of buckling was to tie both spars together with a 'composite buckling prevention
strap'. Further development led to a final design which employed threaded spar pin bushes.
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Analysis of the wing spar in bending revealed shear loads at the spar pins, which at ultimate
load, were approximately 35% higher than those experienced by the light aircraft spar pins.
These shear loads resulted from the combined effects of a higher g loading specified in JAR-
22, and the 42% increase in wing span of the glider wing. These loads were combated by the
use of 12.5mm pins with threaded bushes.

The wing torque housing located on the fuselage sides
To maintain commonality with the light aircraft wing, the housing located on the fuselage
side which diffuses torsion from the main wing as shear, had to remain unchanged. The
glider wing torque pins should also locate within these housings on the fuselage sides with
the minimum of changes.

Previously the standard light aircraft wing employed rigid stainless steel pins within a rigid
housing on the fuselage side. This arrangement was inexpensive and relied on the inherent
flexibility of the fuselage sides to relieve any offset bending loads which would occur from
wing torque and wing bending. However the larger span of the glider wing, with its more
outboard spanwise centre of pressure, develops a very forward chordwise bending load at
high angles of attack. In addition, with airbrakes deployed the glider wing develops a very
aft chordwise bending load. These extreme cases can lead to the sandwich panels which
make up the fuselage sides experiencing high bending stresses in the region of the fuselage
adjacent to the wing torque housing. To compensate for the lack of stiffness of the fuselage
sides, a steel tie bar was used to join both torque housings across the inside of the aircraft
fuselage. The increase in rigidity of the fuselage sides resulting from this arrangement could
lead to the rigid torque pins which locate within the torque housing, experiencing high
bending loads. There could also be a fatigue problem. To prevent extreme damage to the
fuselage sides which might result from both extreme chordwise and spanwise bending loads,
articulating sockets were employed on the side of the fuselage. These sockets prevent the
rigid torque pins and the adjacent wing root inserts experiencing any offset bending load.

BENEFITS OF THE USE OF COMPOSITE MATERIALS FOR PROTOTYPE
CONSTRUCTION

The most efficient means of reducing structural mass is to reduce the density of the material,
rather than increase the overall strength or stiffness of the material. The use of composites
for rapid prototyping, particularly in the case of the glider wing, allows both to be done.
Another reason for adopting composite materials is their excellent fatigue resistance. GRP,
particularly when used as a wing skin material, provides an efficient means of tailoring the
skin thickness to prevent buckling. The spanwise decrease in the number of wing spar shear
webs, and the spanwise decrease in spar boom area is tailored to coincide with the spanwise
decrease in span bending stiffness. In addition to the strength and stiffness benefits, GRP
skins result in a surface finish that is free from surface irregularities therefore have the
benefit of low drag.

"The Europa" prototype glider wing has a CFRP spar that is approximately 12 times stiffer
than the wing skins. The spar was specifically designed to take all the bending loads. This
results in the GRP wing skins only experiencing about 4% of the bending stress. The skin
structure is designed to feed the aerodynamic load back to the wing spar via the wing ribs
and Styrofoam reinforcement. The Styrofoam mouldless construction of the prototype
Europa glider wing structure does not suffer from conventional skin panel buckling. Skin
fibre alignment is employed to transmit torque efficiently from the wing skins to the wing
spar. The GRP wing skins were constructed from wet lay up glass at ±45 degrees to the wing
spar. 299



AEROELASTIC EFFECTS

Unfortunately composites, specifically unbalanced GRP laminates, can experience high
strain under load. Wing flexibility can cause distortions which can in the case of a high
aspect ratio wing, such as "The Europa" glider wing, have an adverse effect on lateral
stability. Wing twisting in response to aileron deflection decreases the available rolling
moment of the wing as a function of the dynamic pressure, which is proportional to speed
squared, because as speed doubles the loads on the wing defined for Condition D on the
flight envelope quadruples. In extreme cases aileron reversal can occur. This is where the
aileron load deflects the adjacent wing structure rather than deflecting the air passing over
the control surface. It is necessary to ensure that the aileron reversal speed is outwith the
maximum operating speed of the flight envelope. Specifically aileron reversal should not
occur at an airspeed 20% greater than the speed VD on the flight envelope.

One benefit of both GRP and CFRP is the ability to tailor wing skin orientation and thickness
therefore increasing the torsional stiffness of the wing skins to correct flutter or resonant
vibration problems. Additional plies of GRP were added to the Europa glider wing for that
reason.

PRODUCTION GLIDER WING

The wet lay up mouldless construction of the prototype glider wing will give way to low
temperature pre-preg sandwich panel construction for the production Europa glider wing
structure. There is no difficulty for a skin membrane to take tension. The problem lies with
the skin taking compression without buckling. Work is ongoing at Europa Aircraft to select
the optimum sandwich thickness, and rib pitch for a production pre-moulded glider wing.
The aim is to reduce the customer build time for a set of these wings to 50 hours.
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INFLUENCE OF PLASTIC COATING OF RADIAL PLAIN
BEARINGS ON CONTACT STRESS

Chigarev A.V. and Kravchuk A.S.
Belarussian State Polytechnic Academy, Dept. of Theoretical Mechanics

Minsk, 220027, Belarus

INTRODUCTION

The thin metal coating are widly used in a mechanical engineering. They improve
work of machine parts with lubrication and in conditions of dry friction [1]. An
appropriate selection of metal of a covering and its thickness it is allowed to supply
serviceability of bearings of dry friction in deep vacuum, with high temperatures and large
pressure [1-3].

In this paper we will describe an explicit approximate solution of the contact
problem for rough rigid disk and isotropy plate with plastic coating on the smooth
cylindrical hole. It will allowed to receive an analytical expression for principal tangential
stress along axis of force action.

CONTACT PROBLEM FOR ROUGH RIGID DISK AND ISOTROPY PLATE WITH
PLASTIC COATING ON THE SMOOTH CYLINDRIC HOLE

Consider an elastic isotropy plate with a composite cylindric hole of radius R
with thickness of coating h. The rigid rough disk of radius r is put in it. It will be
assumed that 62, e/R ( = R -r >0) are low reject values. Force P acts along the
y -axis (Fig. 1).

In the area of contact L we have

(x + u**)2 + (y + v"*)2 = (r sin(g - (e+ 5))2 +r2 cos(g)2,

here

x = R cos(o), y = R sin(4),

u**, v * are components of the displacemets of the plate with the coating, 8 is the
displacement of the disk center. It's easy to see that on L we receive that

6 + u** cos(4) + v** sin(4) -2(c + 1) sin(4)

Let

U =U +U, V =v +v,

where u,v,u*,v* are displacements of the basic material and the of disk roughness in
plastic coating accordingly.
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h P: 0 •/• \

Fig. 1. Geometry of disk and coating.

We shall assume, that the elastic radial displacement in the area of the contact
being determined by the introduction of the micro-irregularity in layer is fixed and
proportional to average contact stress (Y. Then, taking into account the accepted
suppositions, after elementary transformations is obtained:

(g- A) + (G, o-, - iG, a,) + -(--cos(O) + -sin( )) 0 (1)

where G, = (1_- v2), G 2 = (1 + v) - for state of plane deformation; G1 = G2 = 1- for state
of plane stress; v is Poisson's ratio of the basic material; E is Young's modulus of the
basic material; oa-, ar, is normal components of the stress.

It's known that [4]

a C +o, = 2[D(z) +
C4 - a, + 2ir4,€ = 2e 2i4-[z(D(z) + T(z)], (2)

2 fl(u + iv) = KcV(z) - zcI(z) - ig(z)

here /u is Lame's coefficient; i = 97; q(z), yi(z) are Kolosov-Mushelishvily complex
potentials; q'(z)=c1(z), Vg'(z)= T(z), z=x+iy; ic=3-4v-for state of plane
deformation; w = (3- v)/(l + v) - for state of plane stress.

Applying (1) and (2) we receive that
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6- A+ R(2G, [((t) + 4(t)] -(G, ++

(3)

Then using equals [4]

K iP 1O rO(Z*)dr 4(D(z) = 0-1(4)
2yr(l+Kc) z 2-i L T -rz

and (3), we arrive the integral equation:

t f a',,_(,r)dr - IP --1 _R ) - Y -b) 5N°~ ~ Y-t o,,(r)-Tpr2t7 2 2 , -) 5
L

where

-(G,-W72) (l+V)

2GI 4G1

E b _ ~ JI dr t=
2RG----d R2 - i rr, t=Rei€,

The parameter A is defined from equations [1]:

- when A > h2/2r1 :

h_+(A _h 2 )A FA- 0.2 r+ 0.1 h_ 0.14)_ H. P
2r, ri \ h A 6.8 sin(a 0) R o-,b

- and A < h2/2r•

A =Hm(6.8 P OAl
H 6.8 sin(a 0 ) R o',

rl,Hmax are parameters of microdeviations of disk; 2,b are parameters of bearing area
curve of disk [2]; a 0 is a contact half-angle; a-, yield pressure of coating.

Results of investigations show that the approximate solution of (5) can be assumed
in the following form [4]:
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(0) =-P 1  2-[ 2 -+ y I x
R L ao0 +cos(ao)sin(ao)

x cos(O) - cos(ao) cos(%) + (6)

+2 [2 ÷Lr3(.6-A)]InF ý1±+Co)-ýcos ±e-os(a0 )l

Suppose that the ao is known. Then the values P and b are defined from
following equals:

a,, R2 ao

P -2Rf fr(0)cos(O)dO, b 1? a (OdO.

gE

0.2 2

0.1

0 
X0•

It/18 7t/9 7/6

Fig. 2. The relation between ao and parameter P/eE"
1 - for a smooth hole;
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2 - for rough hole with silver coating;

The carried out accounts show, that in case of rough hole contact half-angle
increased on a comparison with a half-angle for smooth hole (Fig. 2) and the greatest
contact stress decreased.

We receive from (2):

0-,. [F i-r =e z- 2 ' 27-(- + K) -Z z+ (7)

Substituting (4) in (7) we obtain expression for principal tangential stress along
axis of force action (h > R):

h 2 (h - -- KT 2(ao + cos(ao) sin(ao))

L - R£ h2 +R 2 -2Rhcos(ao)

-R cos(a,) +- -- + +
( h2 h R Rc2

+1 _+Y3 (6 _ _- 1 1-

- 27f(1 + K) +h + V -

It's impotent to point out that the tangential stress rr is absent for all point of y-

axis. Therefore u-, a,. are normal principal stresses in this case. It's necessary to note that
the value of principal tangent stress Tmnx depends on a. and covering.

CONCLUSIONS

The contact problem for smooth rigid disk and isotropy plate with coating on the
cylindrical hole was considered with help of method of complex potentials. The special
explicit approximate solution, of integral equation is presented in the paper. The analytical
expression for principal tangential stress along axis of force action is received on this
base.

The investigations considerably facilitate application of the theoretical results in
practice. It can be expanded to the case of two elastic cylinders.
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ON RESPONSE OF FUNCTIONALLY GRADED
CYLINDRICAL PANELS TO THERMAL LOADING

E. Feldman and I. Belostotsky

Dept. of Solid Mechanics, Materials and Structures, Tel-Aviv University
Ramat-Aviv 69978, Israel

INTRODUCTION

The traditional approach to fabricating composite materials implies that the rein-
forcement phase is distributed either uniformly or randomly, such that the resulting
properties of a composite do not vary spatially at the macroscopic level. Recently,
a new concept based on tailoring the microstructure of a composite material to spe-
cific applications has taken root. This idea has given rise to the term "functionally
graded materials", or FGMs. FGMs are a relatively new generation of composite
materials in which the microstructural details are varied spatially. The result is
a microstructure that produces gradient of mechanical properties at a continuum
level. Such an approach offers a number of potential benefits over the more tradi-
tional methods; it brings the entire structural design process to the material level,
thereby increasing the number of possible material configurations for specific design
applications.

In order to develop a structural element made of FGM, it is necessary to model
such an element and investigate its required properties. There are presently two
approaches for the modeling of functionally graded materials. The first is based on
a homogenization of the FGM in which the microstructural effects are decoupled
from the global response by calculating pointwise effective thermoelastic properties
without regard as to whether the actual microstructure admits the presence of a
representative volume element (RVE). In the second approach the coupling between
the microstructural and the global macrostructural effects is accounted for.

The concept of stiffness tailoring for improved buckling resistance of functionally
graded plates under compressive loading was investigated in [1-3]. The present study
addresses the idea of tailoring the microstructure of a composite material for the
purpose of improving the thermal non-bifurcational response of a cylindrical panel.
It is supposed that the gradients of material properties throughout the structure are
produced by changing the local reinforcement volume fraction vf.

GOVERNING EQUATIONS

Consider an elastic functionally graded rectangular cylindrical panel of a length a
in the longitudinal x-direction, width b in the circumferential y-direction, thickness
h in the normal z-direction, and radius of curvature R. The structure is reinforced
by either long fibers or discontinuous ones, with the reinforcements volume fraction
vf being a function of the spatial coordinates x, y, z. It is supposed that the rein-
forcements are oriented either in x- or in y-direction.
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It is assumed that thickness temperature gradient is negligible, and a quasi-static
temperature field T the panel is exposed to is a function of the in-plane coordinates
x, y and the time t. The geometrically non-linear response of the non-homogeneous
panel to thermal loading may be described (in the framework of the classical shells
theory) in terms of the stress function (D and the out-of-plane displacement w, in
much the same way as it is done in [4]:

(D' w, + D A2DB2 W"7, + 2 ±B215,),
11a2 1 )o
± 12 (~ W, A 2D 2W, ± 12 B 2c ~ + a2  ±TC 2AGT~

±,,, A2  ¢ + ± - ¢ = 0 (1)

A2 A2 A(*I ,, + A 2 D,- B77 - A2B1 2w,,7,),, )7a22

Here the nondimensional coordinates { x/a,r = y/b, ( =z/h, and the panel
aspect ratio A _ a/b are introduced. Due to the effects of temperature-dependent

material properties, non-uniform distribution of the reinforcement phase, and, pos-
sibly, non-uniform heating, the stiffness matrices A*,B* and D* are functions of
the spatial coordinates and the time t. The expressions for the thermal functions

GT T

o , %'8, (oa,/3 = 7,r) may be found in [5].

Further, simply-supported and clamped panels will be considered. To obtain a
solution to the problem at hand, a method based on a combination of microme-
chanical and structural approaches is employed. The method, which is described
in more detail in [4, 5], allows to establish the effective constitutive behavior of a
non-homogeneous composite panel and provides the response of the structure to
non-uniform temperature loading.

The micromechanical analysis performed relies on the RVE-based version of the
method of cells [6]. It enables one to obtain the effective constitutive law at every
point of a functionally graded composite structure in the form

o-(x, y, z, t) = C(x, y, z, t)e(x, y, z, t) - U(x, y, z, t)AT(x, y, t)

where c- and e are stress and strain tensors, C and U are effective stiffness and
effective thermal stress tensors, respectively, and AT denotes the deviation of the
temperature from a reference value Tref. As a result of a structural analysis, the
behavior of a functionally graded panel, subjected to a given temperature field
T(x, y, t), is obtained for a given reinforcement volume fraction vf(xz y, z). In par-
ticular, the transverse deflection w(x, y, t) may be calculated.

OPTIMAL REINFORICEMENT DISTRIBUTIONS

In the present study, the response of a FGM panel to a given temperature field T =
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T(ý, 7, t) is characterized by the maximum value of the out-of-plane displacement
Wmax that is achieved during the thermal loading:

Wmax =max lw(ý, n, t)J, ý G [0, 1], 7 E [0, 1], t G [tmi•,,tmax] (3)

For greater resistance of a FGM panel to temperature loading, the functional Wmx (vf)
is minimized. This is performed as follows. Function vf is expended into the Leg-
endre polynomials

I J K

v= E E E VijkPi(ý)Pj(77)Pk(C) (4)
i=O j=0 k=O

with Vijk being unknown coefficients to be determined. This allows to introduce an
objective function Wmax = Wmax(Vijk).

It is required that the total amount of reinforcements (namely the panel weight)
remains a given constant

J1 1 •l 1/2vddd

Jo vod~drd< = = const (5)

Two additional constraints stem from the following requirements: vf > 0, vf < 1.
The objective function Wmax(Vijk) is minimized, with Viik being a set of design
variables subject to the above constraints.

RESULTS AND DISCUSSION

To illustrate the proposed approach, consider SiC/Al unidirectional panels subjected
to a non-uniform temperature field T = T(x, t). It is assumed that the reinforce-
ments are oriented in the x-direction and that v*=0.3. Two types of non-uniform
temperature distributions are considered. A symmetric (with respect to the center-
line 6 = 1/2) heating is taken to be of the form

T(6, t) = T§Ef + To(t) sin- ir6 (6)

while its asymmetric counterpart is

T(6, t) = Tref + To(t) sin' ir6 /2 (7)

The value n=O in (6),(7) corresponds to a uniform temperature change; as n in-
creases, the heating becomes more and more localized. Note, that, for a given n,
both temperature distributions have the same average value Tav(t).

For the purpose of estimation the effect of a functionally graded panel, introduce
a ratio w /wh., where Wopt and Whm, denote the maximum deflections for
" functionally graded panel with optimal distribution vflt(6, 7, () and for its ho-
mogeneous counterpart. Furthermore, two examples of tailoring the distribution of
reinforcement phase are considered.

Short-fiber panel with reinforcements non-uniformly distributed in the x-direction.
Consider an aluminum matrix panel reinforced by SiC particles, whose distribution
is non-uniform only in the x-direction, such that vf = vW(x).
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In Fig. 1, optimal distributions vopt of a SiC phase along the x-axis are shown for
simply-supported panels subjected to symmetric (6) and asymmetric (7) heating.
Corresponding response curves, both for the functionally graded panels with opti-
mal distribution vflt(x) and for its uniformly reinforced counterparts with v= vf ,
are presented in Fig. 2.

Vf = Vf(x) Vf = Vf(x)
1•~//

vf°P alb = 1 T(x,t)= Tro, + TO(t)sin
2 

T2X 175 T(xt)= Tef + T,(t)sin
2 

-O - // /

0.8 bh =75 a Tav(0C) "
b/R=. 150

125 • /" //

0.6 1/ /

100 /

0.4 75 '/' T(x,t)= TeI + To(t)sn • :

"50 " b/h = 75

0.2 b/R =0.2

25 - Vf = Vfp1

T(xt)= T,,, + T0(t)sin2 30 ----. Vf= 0.3

0.2 0.4 0.6 0.8 1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x/a Wmax/ h

Fig. 1. Optimal reinforcement volume
fraction distribution along the x-axis Fig.2. Response curves for functionally
for particle-reinforced functionally graded graded and uniformly reinforced panels,
panel, for different types of thermal load- for different types of thermal loading.
ing.

V- v x)

E1
0 0. 8

0 0.8X 0.

X 04 04

0.2

(0) (1/s) (1/a) (2/s) (2/a) (4/s) (4/a) 0..

type of temperature loading 02 0.4 0.5 0.7 2 3

b/R a/b

(a) a/b=l; b/h=75; b/R=0.2 (b) b/h=75; T(x,t)= Tref+ To(t)sin 4 ;r x/a

Fig.3. Maximum deflection improvements for particle-reinforced functionally graded pan-
els.

A beneficial effect of a non-homogeneous reinforcement for different types of thermal
loading is illustrated in Fig. 3a. To present different types of temperature change,
the following notation is used: the first number stands for the value of n in (6),(7);
the second letter indicates whether the distribution of T is symmetric or asymmetric
with respect to ý=1/2. Thus, "2/a" stands for T(ý, t) = Tref + To(t) sin2 (ir6/2). In
Fig. 3b, the histograms W~pl/Wh are presented for non-uniformly heated panel
for several values of the panel curvature b/R (for a/b=1) and aspect ratio a/b (for
b/R=0.2). As can be seen from the figure, the maximum deflection improvements
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that may be attained are quite small for the case of uniform heating; the values
go down as thermal loading becomes more localized.

Long-fiber panel with fibers non-uniformly distributed through the thickness. Con-
sider an long-fiber SiC/Al panel such that the fibers are non-uniformly distributed
in the z-direction, i.e. Vf = vf(z).

For the case of uniform heating, the effects of panel's curvature and width-to-
thickness ratio on the optimal volume fraction distribution is illustrated in Fig.
4. Maximum deflection improvements are presented in Fig. 5; it may be seen that
the beneficial effect of grading the material's microstructure is significant.

Vf = Vf(z) Vf = Vf(Z)
a 1

V pt a/b - 1 V ptalb = 1
b/h = 75 b/R =0.2

0.8 T(t)= T, + T0(t) 0.8 T(t)= Tr, + To(t)

0.6 0.6

b/h=75

0.2 0.2
45

-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
(a) z/ (b) z/h

Fig.4. Optimal reinforcement volume fraction distribution through the thickness for long-
fiber functionally graded panels (in the case of uniform heating); (a) the effect of panel's
curvature, (b) the effect of width-to-thickness ratio.

0.6 0.6
E E
"04 0

o 0.2 0.4

0 0 10

bIR alb blh

(a) b/h=75 (b) a/b=l; b/R=0.2

Fig.5. Maximum deflection improvements for uniformly heated functionally graded pan-
els; (a) the effects of panel's curvature and aspect rado, (b) the effect of width-to-thickness
ratio.

The beneficial effect of the optimal reinforcement vfPt(z) in the case of non-uniform
heating is illustrated in Fig. 6 (light-colored bars) for several types of thermal load-
ing (Fig. 6a) and for different values of the panel curvature and width-to-thickness
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ratio (Fig. 6b). To attain an additional insight into the sensitivity of the results
obtained to the specific type of temperature distribution T(x, t), the following sim-
plified analysis was performed. For a given panel, an optimal volume fraction dis-
tribution vft(u) (0) for the case of uniform thermal loading T = T(t) was calculated.
Then the function vf = vpt(u))(C) was used to solve (without further optimization)
the system of governing equations and obtain the response of the panel to the actual
non-uniform temperature field. The corresponding results are presented in Fig. 6
by dark-colored bars. As is apparent from the histograms, the proposed simplified
approach may by useful, since it yields actually the same maximum deflection im-
provements (as compared to the values Wopt /who-

Vf= XZ)

E 0.6 0.5E
2 0.4 -

E 0.4 0

rA E 03

0.

S0.2 0 0.2

20.1

0~0,
(0) (I/s) (I/a) (2 /s) (2/a) (4 /s) (4/a) .2 0 .4 0 .§ 2

type of temperature loading b/R a/b

(a) a/b=l; b/h=75; b/R=O.2 (b) b/h=75; T(x,t) = Tref'+ To(t)sin 4 Iz x/a

Fig.6. Maximum deflection improvements for non-uniformly heated functionally graded
panels and comparison with the results obtained using a simplified approach (dark-colored
bars). (a) the effect of different types of temperature distribution, (b) the effects of panel's
curvature and aspect ratio.
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SEMI-ANALYTICAL STUDY OF COMPOSITE CONTAINERS
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INTRODUCTION

A research program, developed by IFREMER (Institut Fran~ais de Recherche et
d'Exploitation de la Mer), is concerning with the study of cylindrical containers
used to immerse electronic equipment. Recently, these containers are realized in
filament winding of E-glass fibers and epoxy resin, protected by a waterproof gel.
Standard qualifications being established for metallic containers, excessive safety
factors are used for the structural design of these composite containers. To reduce
long and expensive experiments, we propose a simplified semi-analytical model to
determine the distribution of displacements, stresses and strains in the thickness
and along the length of the structure.
Most of publications on composite cylindrical containers are based on classical
shell theory [2]. Three-dimensional analytical solution [5] have been developed far
from the plugs, but in the region near the ends it is insuffisant to take account the
curvation of the structure.
In this paper, the semi-analytical model presented gives a refined three-dimensional
solution inside cylindrical containers under general mechanical loading of internal
and external uniform pressure taking into account plug effects. This solution is
approached by Fourier-series [1], [3], [4], [6]. It gives more accurate results than
classical shell theory approximations and requires less computational time and
effort than a numerical calculation. Also, confrontation with experimental results
shows a good agreement.

BASIC EQUATIONS

The behavior of an unidirectional fiber-reinforced ply is experimentally charac-
terized and the equivalent behavior of the composite structure is obtained by a
homogenization process. So, we consider an homogeneous orthotropic elastic con-
tainer represented by a closed tubular domain where plug actions are modelized
by adequate boundary conditions. Because of symmetric properties of the geom-
etry and the mechanical load, we solve an axisymmetric problem on the half of
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the structure (fig.1). Stresses and strains axe varying in both axial and radial
directions.

I I -----. - -

rit

r2I I l I I I I I I I I I
T2i PI27t

T T T TT T T T T T T T T T T T TT

"P2

Figure 1: Cylinder geometry and loading

The generalized Hooke's law for a orthotropic homogeneous material is given by:( rr all a12 a13 0 Crr\

o'eG a21 a22 a23 0 / Ceo) (1)
azz a31 a 3 2 a 3 3 0 ECzZ

Urz 0 0, 0 a44  
2 Crz

in which the aij - aji (ij) = (1, ..., 4) are the stiffness constants of the material.

In the absence of body forces, the elastic response of the axisymmetic cylinder
must satisfy the equilibrium equations:

Darr + 1--r-- + (arr - 0o19) 0- o;a-- + aa-z + Cr: = 0 (2)
')r ±'9 7 (Gr~e) O Or 9Z r

where a is the Cauchy tensor and r, 0 and z are the radial, circumferential and
axial coordinates.
The strain-displacement relations are given by

au U Ow Ou OwS=T0-; coo-= -;r cz:= -- 2Cr =--z + --0 (3)
Orr r r L9 Z Z 5z r

where u and w are the r, z displacement components respectively, C being the
linear strain tensor.

BOUNDARY CONDITIONS

The loading on the outer surface (r = r 2) is described by the boundary conditions
oU.n = -p2 ii and on the inner surface (r = ri) by or.n -P1 ii, where i -,Fr. The
plug can be supposed rigid and in a perfect bonding with the tubular part of the
container. Then, the plug actions are modelized by an axial global force along the
z-axis :

f r2 p (P 2 -P 2 r2)• •(, •= L • d = - =(4)
a. 2 1  2

and by conditions on the displacement weakly imposed on the terminal section:

u(r, z = L) rdr = 0 w(r, z = L) rdr = Cste unknown (5)
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Then, we add symmetric conditions on z = 0: arz(rz = 0) 0 0, w(r,z 0 0) = 0.

CONSTRUCTION OF THE SOLUTION

First, we propose a solution of this problem where P is equal to zero in (4) ; the
container being only loaded on the lateral surfaces by the. internal and external
pressure (fig.2).

Pi
symmetric -->
conditions (u1, 1) u=O

P2

Figure 2: Problem P1

For solving this first problem, denoted P1, we assume that the displacement is in
the form of Fourier series:

ur(r z) 5 u,,(r) cos(n, ) w(r,z) n( ) Z (6)
n=1,3,iS1.. n113,s, n(

Under this form, the boundary conditions at z = 0 and the boundary conditions
on the displacement at z = L are satisfied. The serie coefficients u,(r), wn(r) are
determined by the equilibrium equations and the loading boundary conditions.
Combining equations (1)-(3) and (6), equilibrium equations are satisfied if the
fonctions un(r) and w,(r) are solutions, for all n=1,3,5..., of the following system :

[nr ) 2[A]nir 1[B]d[D]) 1[c] + 1 d[E]d*[d ] o(r) - (7)

where the matrix [A], [B], [C], [D] and [E] are given by:

[A] - (a33 0) [C] = 0(0 0) [)
0 -- a44 0 -a22 l

[B] 0 -(a 44 + a 23 ) [D] = --- -(al.3+-a44)4[]---a23 +- a13 0 a13 +a40

This system is a four-order ordinary differential system with r dependent coeffi-
cients and is solved by a simplified approach searched in terms of the following
expansion:

4 4

u,(r) E 5Cj un1 (r); w(r, z) E 5Cj w~j(r)
j=1 j=1

where C3 (j=1,...,4) are unknown constants and where the functions u,,j et wj
are written

(wnj(r) )--exp (\ •Cr1)) (dn) exp (Aj(r-1))d..

315



R is the radius of the midsurface : R = (r, + r 2 )/2. Vectors di and scalar A' are
solutions of the generalized eigenvalue problem

{[HI] + A [H2 ] + A2 [H31 }d.j = (8)

with:

[HR1= r, 2  Rrs-
["[A= \ 2L )[A] +-- [B] + [C]; [H2 ] = -'-7 [D] + [E]; [H3 ] =[E].

Equation (8) is solved with a symbolic code. Constants C, (j=1,...,4) are
determined from loading boundary conditions. Then, the uniform pressure p is
developed in the form of cosine series Fourier :

_ 4 sn n~rz
P = P ni" sin(-)"c'

n=1,3,5,..

and Cj (j=l,...4) are solution of the system:

a, ... a4 C1 (-pl sin(n~r/2)
bi ... b4 C2 4 -P2 sin(n/2)
CI ... C4 G3 nr 0
di ... d4 sn4) 0

with: a a13d. nj - a'2dA+"aL- -)

niT + 1  n exp (AR
bj = a13 dn + ±-j + a1idkdua exp(Aj(- -1))

S2L r2R j 1R

ci a55 -- du + -dn)j exp(A,(2 - 1) )

dj - [a,, (-- duj + d exp(A(f - 1)) j 1, 2, 3, 4.

To these problem we superpose another one where the lateral pressures are taken
equal to zero and the global force in (4) is now equal to P/27r. This second
problem, denoted P 2, is obtained by a linear combination (fig. 3) of the solution
of the problem P1 and the classical solution without plug effects where stress are
supposed fonction of r only, [5].

0L112 P/27r

.0 Pm0(02,02.) 27,
S. .0 " , r .•0

I • 010 lu=-O -0II'0 ) =

pin

Figure 3: Decomposition of the problem P2
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Notice (i, = ( + (i,& 2 ) and (a,&) ='(f, &) + (?i,&2) the solutions of
the elementary problems described at the figure 3.

Finally, the global solution of the initial problem is given by:

(U', a) = (U-1, a,) + Di (u2,&) + D, (id,)

where D1 et D 2 are given by:

Di j i(r, z = L) rdr + D 2  fi(r, z =-L) rdr = 0; D 1 + D 2 1.

The equilibrium equations are satisfied only on the middle radius, so this solution is

more accurate for thin container. For very thick containers, an accurate solution

is obtained by the same method by considering a several'ply laminate cylinder

where continuity conditions are used at each interface.

RESULTS AND COMPARAISONS

This semi-analytical approached resolution has been compared with a numerical

solution computed on the finite elements code Modulef, included the mesh of plugs.

The composite container is a ±550 filament winding submitted to the pressures

pi = 1 Atm and p2 = 300 Bars. The geometric and elastic constants of the

homogeneous material in the (r, 0, z) directions are

rl= 0.0875m; r2 =0.1065m; L = 0.175m
E=17GPa; E 2 =22.7GPa; E 3 =14.8GPa;

G32= 12.6 GPa; G31 = 5.69 GPa; G 31 = 5.59 GPa

V32 = 0.39; w3i = 0.26; V21 = 0.15

Figures 4 and 5 present the evolution of the coo and c,, strain components along
the z-axis on r = R.

to

Io0 .LOI 
N.0010i

to 12

.00 2 1. N1132 0 6 0

Figure 4 coo(R,z) Figure 5 : '1,(Rz)

•:numerical solution; - approched model ; -:solution whitout plug effects [5]
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Comparisons with experimental measurements (in pdef) are given in table 1 for a
oceanographic container where geometric constants are r1=0.05 m, r 2:=0.0685 m,
L=0.3 m.

anal. exp. anal. exp. clas. clas.
coo Coo CZZ ezz coos.zz-cs

z/L-- 0.9 -2165 -2290 -1812 -1565 -2580 -1061

z/L = 0.66 -2901 -3434 -1017 -1087 -2580 -1061

z/L = 0 -2580 -2536 -1061 -1260 -2580 -1061

Far from the ends, the refined solution joins, of course, the solution in which
plug effects are not taking into account. Near the plug, the refined analytical
approach gives a good approximation of the the strain compared to the classical
model without plug effects. It is interesting to notice that from about 25 terms
in the series, this semi-analytical resolution gives good results and beyond 1200
terms, there is no any improvements in the solution and time resolution is ,about
3 minutes.
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ABSTRACT

Rapid deteriorations of structural concrete caused by corrosion of reinforcing steel is
becoming a serious problem faced by construction industries world wide. The extent of
the problem caused by corrosion is so serious that concrete durability has been recently
described as a "multimillion dollar opportunity". One way to eliminate corrosion problem
is to use composite (or fiber reinforced plastics) as reinforcing materials. As a pioneer
work along this line, this paper presents the experimental results of concrete columns
reinforced by composite members.

The column size was 150 mm in inner-diameter and 450 mm in length. Three types of
columns were prepared using different composite materials. They are: filament-wound
fiber glass composite tube, with a wall thickness of 14 umm, reinforced column, carbon
fiber strand. reinforced column, and glass fiber strand. reinforced column. The fiber
strand.s were pre-wound with different spacing on a PVC tube (8 mm wall-thickness)
and then concrete was filled in the tube to cast the specimens. In this way, PVC tube
acted as a mold and formwork was saved. In addition, plain concrete columns and steel
tube reinforced columns were also prepared for the purpose of comparison. The
compressive tests were conducted using 450 metric ton MTS machine. For tube
reinforced columns, the load was applied to concrete only through a circular steel plate.
On the outside surface of the tube, strain gauges were used to measure both axial and
lateral strain during loading.
The experimental results show that the strength of concrete columns reinforced with fiber
strand, increases with decrease of spacing of the strand.s. For a spacing of 25.5 ram, the
strengths of the specimens reinforced with either carbon or glass fiber strand.s are twice
as much as the plain concrete column. The ductility of concrete columns reinforced with
fiber strand. can also be significantly improved, especially for glass fiber strand.
reinforced specimen. The filament-wound composite tube reinforced concrete columns
can significantly increase both strength and toughness of concrete through strong
confinement. A three time increase in strength and a five time increase in strain capability
have been achieved. A big potential exists for the application of this kind of hybrid
structure in the field construction.
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INTRODUCTION

The beneficial effect of confine stress on strength and ductility improvement of concrete
has been long recognized. When a concrete specimen under compression is restrained
from dilating laterally, its behavior is quite different from the case of uniaxial
compression. The restraint to lateral dilation can be provided by lateral steel stirrups in
the form of spirals or rectangular ties. Alternatively, lateral pressure can be achieved by
a steel tube. It has been shown that for equal weights of lateral reinforcement, spirals are
more than twice as effective, in terms of strength enhancement, as rectangular ties. An
extensive investigations has been conducted to evaluate the confining effect of different
lateral reinforcement. Since the steel tube reinforced concrete showed the advantages of
stronger, more ductile, and tougher performance, this kind of structural form has been
widely utilized in tall buildings, long span structures, and earthquakeproof constructions.
However, due to the nature of steel, steel member reinforced concrete frequently
encountered a serious corrosion problem.
There are two kinds of steel corrosion in steel member reinforced concrete structures,
chloride-induced corrosion and carbonation-induced corrosion. The chloride-induced
corrosion is more dangerous because of its localized nature which can substantially
reduce the effective area of steel and lead to a sudden failure of a structure. It is well
known that under the normal conditions, steel inside concrete is prevented by the strong
alkaline nature of Ca(OH)2 (pH of about 13) through a formation of a thin protective film
of iron oxide. The steel corrosion in structural concrete is primarily caused by the
presence of free chloride ions in the matrix. The chloride in the atmosphere can penetrate
into the concrete. The penetrated chloride ions diffuse through a concrete cover to steel
surface first. Then a sufficient quantities of chloride ions have to be accumulated. Next,
when the concentration of chloride ion in concrete reaches a certain level for a certain
value of pH, it dissolves the protective oxidized film. Thus a localized breakdown of the
passive film on the steel is formed by the action of these accumulated chloride ions and
then a galvanic cell is created. The process becomes autocatalytic and proceeds with the
deepening of corrosion pits rather than the spreading corrosion laterally along the steel.
As the steel increases its state of oxidation, the volume of the corrosion products expands.
These expansion creates cracking and spalling inside concrete, and finally destroy the
integrity of the structural concrete and cause the failure of buildings and infrastructures.

To solve the corrosion problem of reinforcing steel in concrete, composites or fiber
reinforced plastics (FRP) are being seriously considered as the replacement for steel
rebars in some structural concrete members. In the past few years, some research and
development work was devoted to assess the strength, durability characteristics, and
design of composite materials as well as the structural members reinforced with
composites. Nanni et al.[l ] studied the bond anchorage of fiber-reinforced plastics acting
as tendons. They concluded that the FRP tendons might experience slit cracks which
could not be accepted because of the durability issue. Nanni[2] also investigated the
flexural behavior of FRP rod reinforced concrete beams. He put his emphases on the
design guidelines for the structural member reinforced by FRP. Because FRP is linear
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elastic up to failure, he concluded that the working stress method was more suitable for
FRP reinforced concrete. Saadatmanesh et al[3] investigated the strength and ductility of
concrete columns externally reinforced with fiber composite straps. The parametric study
of their analytical model indicated that the strengthening method with composite straps
could effectively increase the strength and durability of concrete columns degraded by
seismic loading.

In this study, the effectiveness of using composite members to reinforce the concrete
columns has been investigated. It has been demonstrated that confine pressure can be
established through the properly utilized composite members. With these confinement,
both strength and ductility of concrete column can be significantly improved.

EXPERIMENTAL PROCEDURES

Total five groups of specimens were for compression tests. The specimens include plain
concrete columns, steel tube reinforced columns, composite tube reinforced columns,
carbon fiber strand reinforced columns and glass fiber strand reinforced columns. The
fiber strand reinforcement was made possible by pre-wound the fiber strand on the
surface of PVC tube. During casting stage, the PVC tube acted as the mold for filling the
concrete. All the specimens are 150 mm in diameter and 450 mm in length. The test
program is summarized in Table I.

Table I Specimen Details

Specimen Identification Reinforcement form Spacing (mm)

P -C -C ........

S-T-RC Steel tube ----

C-T-RC Composite tube ----

C-F-S-RC-1 Carbon fiber strand 51

C-F-S-RC-2 Carbon fiber strand 38

C-F-S-RC-3 Carbon fiber strand 25.5

G-F-S-RC-1 Glass fiber strand 51

G-F-S-RC-2 Glass fiber strand 38

G-F-S-RC-3 Glass fiber strand 25.5

The concrete was prepared by using Type I ordinary Portland cement, river sand, and
crushed limestone. The mix ratio is 1:0.55:1.8:2.5 (Cement : water: sand: aggregate by
weight). The column specimens were cured under the conditions of 23°C and 100%
relative humidity before test.
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The column specimens were tested using a digital closed loop controlled 450 ton MTS
machine. The compression tests were conducted using a stroke control under a rate of 0.1
mm /min. Four strain gauges were glued onto the surface of the specimens, two in axial
direction and two in lateral direction in order to measure the axial and circumferential
strain. The load was applied to the column through two circular steel plates. The test data
were acquired using a computer and the data were recorded every two seconds.

TEST RESULTS

Fig. 1 shows the stress-strain curves for a plain concrete column, a steel tube reinforced
column, and a composite tube reinforced columns. The compressive strength of plain
concrete column, 38.5 MPa, was smaller than that of standard cylinder specimen, 46
MPa, although they were made from the same batch of concrete. This phenomenon can
be attributed to the size effect. On the other hand, tube reinforced concrete showed a
significant increase in both strength and ductility. As shown in the Figure, the steel tube
reinforced concrete column reached 130 MPa with a very long plateau. After deducting
the contribution from steel tube, the net strength of concrete was 94 MPa which was 2.4
times as high as that of plain concrete column. As for toughness, more than 100 times
increase was observed. Similar phenomenon was observed for composite tube reinforced
concrete column. As shown in the figure, the strength of composite tube concrete reached
250 MPa. The strength of concrete can be estimated by using a parallel model. After
deducting the failure load of composite tube from the maximum load carried by
composite tube reinforced concrete column, the value turned out to be 125 MPa which
is 3 times of the plain concrete specimen's strength. Moreover, a significant increase in
toughness was achieved by composite tube reinforced concrete column. It should be
indicated that the visual inspection on the concrete inside the tube after removing either
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Figure 1 Stress-strain curve comparison for tube reinforced concrete columns

steel or composite jacket did not find any obvious damage. It seemed that the concrete
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was still in a fairly good condition even after carrying such a heavy load.

Fig. 2 shows the stress-strain curves for a plain concrete specimen and three carbon fiber
strand reinforced concrete columns with different spacings. It can be seen from the figure
that there are a substantial increase in strength for all fiber strand reinforced columns. The
degree of strength increase of these columns depends on the fiber strand spacing. For the
columns with a spacing of 51 mm, the strength only increases by 39%. For those with a
pacing of 38 mm, the strength increases by 79%, while for those with a spacing of 25.5
mm, the strength is almost doubled. In additional to the strength increase, the strain
capability of the columns with fiber strand is also enhanced significantly. Comparing with
the plain concrete columns, whose strain capacity only reached 0.002, the strain capacity
of carbon fiber strand reinforced columns are 3.5 times, 4 times, and 5 times of that of
plain columns for the spacings of 51 mm, 38 mm and 25.5 mm, respectively.
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Figure 2 Stress-strain curve comparison for carbon fiber strand
reinforced concrete columns

Fig. 3 plots the stress-strain curves for three glass fiber reinforced concrete columns and
compares them to the curve of a plain concrete column. The spacing among the glass
fiber strands for three columns is 51 mm, 38 mm, and 25.5 mm, respectively. The
corresponding strength increases of three columns with glass fiber strand reinforcement
are 28%, 57%, and 94%. These values, slightly smaller than those achieved by carbon
fiber strand reinforcement. However, if we take a look about the strain capability, we will
find that the glass fiber reinforced concrete columns are superior to carbon fiber
reinforced concrete column. The ultimate axial strain of the glass fiber reinforced
concrete columns reached the values of 1.1 percent, 1.22 percent, and 1.5 percent,
respectively, while the corresponding carbon fiber reinforced concrete columns only 0.7
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concrete columns

percent, 0.83 percent, and 0.95 percent. In other words, there is about 50% increase in
strain capability for glass fiber reinforced concrete columns.

CONCLUSIONS

(1) Fiber glass composite tube with continuous filament winding can provide a strong
confinement to inner concrete. With such a confinement, the strength of concrete can
increase by four times. In addition, fiber glass composite tube can also increase the strain
capability of concrete as high as five times.
(2) The carbon fiber strand reinforced columns can provide a reasonable confinement to
inner concrete. A strength increases of 39%, 79%, and 114% were observed for the strand
spacing of 51 mm, 38 mm, and 25.5 mm.
(3) The glass fiber strand reinforced columns showed a smaller increase in strength but
a lager increase in strain capability as compared with carbon fiber reinforced columns.
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ABSTRACT

Filament wound composite isogrid is a structural concept that utilizes the use of
repetitive equilateral pattern of stiffening ribs. The name isogrid is used because the triangular
grid exhibits isotropic properties. The ability of isogrid structure to withstand compressive,
bending and combined loads makes this structure attractive to the designers for spacecraft
applications. Composite isogrid structures by virtue of their lighter weight, superior mechanical
and thermal properties, further enhance these characteristics. However, the fabrication of these
composite isogrid structures, especially the cylindrical ones, possesses a major challenge to the
manufacturers. One of the methods that is being pursued by NASA and Air Force's Phillips Lab
to manufacture composite isogrid is through the use of thermally stable foam mandrels. During
the cure process, low coefficient of thermal expansion of the foam causes less compaction of the
rib extremities. Lesser compaction of the ribs initiate delamination at the earlier stage of the
loading and eventually affect the ultimate load carrying capacity of the isogrid structures.

A comprehensive finite element analysis (FEA) has been performed in this study to
investigate composite isogrid cylinders representing the intertank of the space shuttle. The
intertank is the structural connection that joins the liquid oxygen and liquid nitrogen tanks to
provide structural continuity between the assemblies on the external tank (ET). A two stage
approach has been adopted for the development of the FEA model of the composite isogrid
cylinder. In the first stage a unit cell representative of the cylindrical structure has been modeled
and subjected to in-plane compression to have a first-hand estimate of the stress and compact
force distributions. In the second stage, unit cells have been generated in multiples to form into a
complete cylinder. Axial loads are then applied on the cylinder, and parametric studies are
conducted with various rib geometry. In each case, stress distribution and the distribution of
compact force have been analyzed. Details of the finite element modeling and the analysis of the
parametric studies are presented in this paper

INTRODUCTION

The investigation of efficient, lightweight, cost-effective aerospace vehicle is a major
goal of the aerospace industry. Structural efficiency is an important aspect of the design of
cost-effective aircraft structures and this can be achieved by using Isogrids into the main
structure of the spacecraft. The selection of lightweight, high-strength materials have been
narrowed down to the isogrid structure. A few of the characteristics of isogrids that make this
structure attractive to designers are, 1) they behave isotropically, which means that the properties
are uniformly distributed throughout the entire framework, 2) It has the ability to withstand both
compression and bending, which is an important factor for spacecraft design. The isotropic
property and effective Poisson's ratio of 5/3, enables the isogrid to be mathematically
transformed to an equivalent homogeneous material layer. This transformed expression can be
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substituted into shell equations to analyze the overall behavior of isogrid structures. Further
optimization of these characteristics are being investigated and the primary focus is now on
composite materials. This isogrid - stiffened structure when formed into a cylindrical form,
becomes a useful part for aerospace structures. This structure shows its effectiveness for space -
craft tankage, interstages and in the skylab crew quaters. It also functions as a protective
compartment housing for the operational instruments and range safety components.

It is observed that the former studies were performed most frequently with aluminum
alloy specimens. However, the composite isogrid structure by various buckling and compression
test, shows the characteristics that are necessary to optimize and achieve the goal of the
aerospace industry, which is primarily to lower the weight of the aircraft while maintaining the
high strength that is required.

One of the first projects to employ the isogrid structure was the Delta Launch Vehicle
project which began in 1959. This design was incorporated into the external skin structure of the
booster and was machined from flat 5.27cm (5/2 in) thick 54ST6 free machining aluminum alloy
plate, brake-formed into curved shapes and finally welded into 2.44m (4ft) diameter tank shells.
The evaluation of isogrid structures indicated that they possessed advantages that were critical to
the improvement of aircraft structures. This reinforced the decision to design the interstage and
the fairing for new model Deltas, using isogrid structures. Likewise, one of the earliest analysis
was performed using finite element program NASTRAN [3] . The importance of this analysis,
was to determine the general instability, theoretical allowable for compression loading, which
includes axial compression, equivalent axial compression due to bending as well as offsetting
axial tension. forces due to internal pressure. The earliest detailed usage of composite material
found in this investigation was performed by McDonnell Douglas Astronautics Company in
1972, where three composite cylinders were designed with the isogrid patterns on the external
surface of the cylinder. Each cylinder experienced one of the mode of buckling behavior- of
isogrid stiffened structure which was either general - instability budkling, skin buckling or rib
crippling.

The first continuous filament isogrid stiffened structure was produced in 1976. Again,
compression buckling and dynamic behavior of the. structure was tested [5-6]. One study on a
Lockheed C-530 transport aircraft center fuselage using the continuous filament .winding.
structure, showed a weight savings of 20-30 percent over metallic design. As recent as 1992 and
1993, more studies were done on these structures, such as, the use of the COSMOS/M finite
element analysis program, which was used to determine the buckling load for a composite
isogrid flat panel, as well as work done to verify the feasibility of using acoustic barrier vibration
control (ABVC) system with the isogrid structure. As part of very recent works, the effect of
stiffness discontinuities and selected structural parameters on the behavior of grid stiffened
panels, specifically the effects of both manufacturing introduced stiffness discontinuities and
induced damage on grid stiffened panels were also performed by Reddy and Rehfield[8- 10]. The
studies were performed on both isogrid and. orthogrid panels.

FINITE ELEMENT MODEL DEVELOPMENT

A nonlinear Finite Element Analysis (FEA) using ANSYS is conducted to study the
compaction of the rib extremities for the different rib geometry of the composite structures. The
isogrid composite cylinders are modeled with 8 - noded structural solid, solid46. The formulation
of the solid element used in this investigation is based on the lamination theory that the strain
distribution in the thickness direction remains constant. This layered version of the 8 noded
structural solid element allows up to 100 different material layers and has three degrees of
freedom at each node: translations in the nodal x, y and z directions.
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A two stage approach has been adopted to develop the complete FEA model of the
isogrid cylinder. At the first stage, a unit cell representing the isogrid structure has been
developed. The rib to skin thickness ratio i.e. d/t has been used as 3.5, as found in some early
work. and kept constant throughout the analysis, for unit cell as well as for the complete cylinder.
The geometric dimension of the unit cell is shown in Figure l(a).

In the second stage, a flat model using 40 unit cells ( 4 along Y- direction & 5 along X-
direction) is developed. This flat model, then, converted to a complete cylinder through suitable
cylindrical coordinate system to conform the shape of the isogrid stiffened cylinder. This general
procedure is adopted for all the three cylinders. The three different rib geometry are shown in
Fig. 2(b). The skin section of all the cylinders have been configured with four identical layers &
their rib sections have been generated with 12 identical layers. The lay up sequence for the skin
is [0o/450/-450/901] & it is an alternative arrangement of 600 & -600 for the rib. Carbon
composite is used as the material for this isogrid structures and the properties as used in the FEA
model are as follows: E,= 20.44x10 6 psi, Ey = 3.70xl06psi, Gxy = 1.04xI0 96psi & Vxy= 0.32

• The applied compressive load was computed according to the conventions used in the
"Isogrid Design Hand Book", [I]. This value has been obtained as 650 Mpa from equation (2).

Nc= 10.87Et(- (()

f c -(2)

t
Where, Nc = critical load for skin buckling in compression, lb/in.

E = Young's modulas of elasticity, psi
t= skin thickness, in.
h = height of isogrid triangle

t = equivalent skin thickness, in.
f= allowable compression stress, psi

Here t can be defined by the following equations (3) & (4)

t =a(t+1) (3)
bd

And a = - (4)
th

Where, b = width of the isogrid rib, in.
d = rib thickness, in.

RESULTS AND DISCUSSIONS

It has been stated earlier that for simplifying the modeling effort, unit cells were
developed at the initial stage of this investigation to represent an ideal repetitive structural unit of
the isogrid cylinder. Although the response of the unit cell cannot be directly linked with those of
the cylinders, it was of particular interest in this study to investigate the unit cell response. This
importance was due to the fact that unit cells were also fabricated and tested in the lab during the
earlier part of this investigation. Unit cells were tested under axial compression and
correspondingly compressive loads were applied in the Y-direction in the FEM model as
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indicated in Fig. 1(b). The following discussions are therefore, presented in two categories,

namely, (1) Unit cell Response, and (2) Response of the isogrid cylinders

Unit Cell Response

Three different stress distributions, namely, a, , ay and q, along the thickness of the

unit cell arrangement is shown in figure 3(a). These stress distributions have been plotted in the
locations of their maximum values. The region inside the small circle as shown in figure 1(b)

corresponds to these locations. The distribution of oa, dominates the other stress distributions.

However, each of these stress distributions follows the same pattern, starting with a minimum

value and then keeps increasing until it attains its maximum value at the rib-skin interface and
then it keeps decreasing up to the total thickness. These large stress values at the rib-skin
interface are due to the stress concentration at that location. The abrupt change in cross-sectional
area from the skin to the rib is mostly responsible for this stress concentration. These large stress
values cause fiber rupture, matrix crack and delamination. The clear separation between skin and
rib as has been observed from different stress contour plots supports this fact.

Figure 3(b) shows the distribution of the compaction force (Fz ) along the

thickness of the unit cell. But much lower value is noted from this distribution. However, this
distribution cannot reflect the importance of study of the compaction force for the isogrid

structures. This can only indicate that the rib-skin interface is the location where an abrupt
change in values of the compaction forces is taking place.

Response of the Isogrid Cylinders

Owing to the importance of axial, radial and interlaminar shear stress for determining the
failure mechanism of isogrid cylinders, their distributions have been analyzed in the present
investigation. The current investigation has been focused on three different isogrid cylinders with
three different rib geometry under same loading and boundary conditions. These are rectangular,
triangular and taper rib geometry. Since both D/L and d/t ratios have been kept constant for these
three different cylinders, it is possible to pursue a comparative study between them. The through
thickness distributions of axial, radial and interlaminar shear stress for three different rib
geometry are shown in figure 4(a), 4(b) and 5(a) respectively. These distributions have been
plotted in the locations of maximum stress thru the thickness. For three different rib geometry,
maximum axial stress occurs near the points of loading. The maximum radial stress attains in the
region, which is about from 0.5L to 0.7L away from the fixed end of different cylinders. But
the maximum interlaminar shear stress occurs near the fixed end.

From the axial stress distribution, isogrid cylinders with triangular rib geometry shows a
peak of 1250 Mpa at the rib-skin interface. These values are obtained as 1100 Mpa and 940 Mpa
for the isogrid cylinders with taper and rectangular rib sections respectively. These axial stress
values are much higher than the compressive strength of any matrix material that we usually
encounter in the standard composite material system. Therefore, matrix crack will take place at
the locations of maximum axial stress. This will lead to delamination of corresponding layers.
Triangular and taper rib geometry are most susceptible for this crack phenomenon compared to
rectangular rib geometry. This observation can recommend isogrid cylinder with rectangular ribs
as a suitable one for axial compressive loading situation.

The through thickness distributions of radial stress for three different rib geometry is
plotted in figure 4(b). The isogrid cylinder with triangular rib geometry presents maximum
radial stress. Large radial stress (tensile) at the rib-skin interface for the triangular rib geometry
suggests the possibilities of tensile rupture of fibers at those locations. Besides this, large radial
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stress in tension in the neighborhood of inner radius may cause local buckling of the wall at that
location. This is not the case with other two rib geometry. Although the rectangular rib geometry
has a tensile peak at the rib-skin interface, its smaller value can't dictate any failure mechanism.
The radial stress distribution for the taper geometry is entirely compressive in nature. This
suggests the tendency of fibers to be contracted under axial loading situation. This can eventually
restrain isogrid cylinder with taper Abs from fiber pullout. The tangential stress distribution
which has not been presented here shows very good correlation with their corresponding radial
stress distribution.

Interlaminar shear stress distributions are presented in figure 5(a). Interlaminar shear
stress distributions attain their maximum value close to the outer surface of skin. For taper and
rectangular rib geometry, these values are very large compared to the interlaminar shear strength
of any composite material. This fact alone can predict delamination as a viable failure mode for
the isogrid cylinder under compression, specially for rectangular and taper rib geometry. For
triangular rib geometry, the contribution towards delamination is very negligible from
interlaminar shear stress. In this case high radial stress is responsible for fiber pull out and
ultimate delamination to occur.

The compaction force distribution for three rib geometry is shown in Fig. 5(b). The nodal
forces in the radial direction have been taken as compaction forces. The isogrid cylinder with
triangular ribs exhibits comparatively higher compaction force than the other two cylinders.
However, much smaller compaction force indicate its insignificance related with the present
study.

Although the stresses are found to be lowest in isogrid cylinders with rectangular rib
section, the axial displacement of the cylinder with the rectangular rib is 65% more than that of
cylinder with triangular rib and it is 24% more than that of cylinder with tapered rib. This is
because of more stiffening capabilities of triangular rib section over the other two types.

CONCLUSIONS

A composite unit cell representative of cylindrical isogrid structure for finite element
analysis has been successfully developed. The unit cell has been extended to a complete cylinder
consisting of equilateral lattice of composite isogrids. Finite element analysis on these cylinders
reveals that higher stresses are observed due to the stress concentration effect at the rib-skin
interface, suggesting that the interface is most vulnerable for any kind of rib geometry. This
stress behavior for the isogrid cylinders is found similar to the unit cells response. The lower
value of compaction force in both the unit cell as well as in the isogrid cylinders suggests that
future investigation is necessary and the residual stresses introduced in the cylinders during
curing of the manufacturing process needs to be considered. Out of the three geometry, the
isogrid cylinder with rectangular rib-section shows the lowest stress values at the rib-skin
interface compared to cylinders with tapered and triangular rib-sections, indicating the better
geometry for the manufacturing of composite isogrid cylinders.
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INTRODUCTION

Method of analysis of a bending composite beams of a piece-homogeneous structure,
taking with account deplanation of the cross sections, give the possibility to investigate features
of a stressed-strained state (SSS) in zones of boundary effects is developed. Such theory of the
flat bending of layered constructions is resulted in [1]. The expansion of this theory to
constructions of a more general structure is connected to large difficulties as at formation of
initial settlement hypothesizes, as at its realization. It requires a effective mathematical
apparatus and approach's to programming of calculations. The mathematical formulation of the
theory is given in the terms of the theory of generalized functions. It enables to create the
effective software by methods of computer algebra, expanding, thus, area of application of the
developed theory.

PROBLEM STATEMENT

All transformations are executed with use of mixed designations: the expressions have
the integrated form, the displacements and stresses are designated as "classical" functions,
simultaneously at expressions there are generalized Heaviside step function and " simple
layer". It does not result in misunderstanding. From finitely valued of energy of deformations
follows local integrable of functions, which describing SSS of the body [2]. By Dyu'Buh-
Raymide lemma [3] one-to-one correspondence between of sets of local integrable functions
and sets of regular generalized functions exists. At the same time, application of the
generalized functions is expedient for the realization of the theory:

Firstly, the Heaviside step functions and " simple layer" are, de-facto, of the logical
predicates, that enables to receive expressions for parameters SSS as piece-homogeneous area
uniform expression. Secondly, they are generalized functions, that enables to remove all
necessary expressions by analytical transformations on the basis of properties these functions.
In third, these functions and their properties by the terms of algorithm language of a system of
computer algebra ANALYTIC [4] are expressed. It enables all necessary transformations and
calculations, including symbolical, to make automatically with the help of a computer.

MAIN EXPRESSIONS

We shall consider a piece-homogeneous body in the form of a beam in Cartesian
system of coordinates XYZ. Cross section A has a border ]A of any form, not varying along a
longitudinal axis ( Fig.1 ). The cross section of the beam consists areas Ak ( k=O, 1,2.... N) of

N

various material phases (A = U Ak ). The elastic characteristics, Yunge module and share

k=O
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module, various material phases we shall designate accordingly Ek and Gk. On borders of
section of various material phases rigid contact takes place. Along each direct, parallel of the
beam axis, SSS is superposition of independent SSS in planes, taking place through this direct,
in parallel to the coordinate planes XCZ and XCY [1]. The equations of equilibrium of section A

of composite beam for normal stresses rx(x,y,z) can be written as

a1' (X, Z) + 1ýX (X, Z) 0

2(rx,x (x, y) + r yx'y (X, Y) =0O (X, y, Z) E A, 0: X<_ x Il 1

I = X,(x,z)+ U2(XY)arx (x , y, Z) =ax Crx(Xy)

A o  Z Ak A feature SSS of the

piece-homogeneous body is
C ,(xO0) that the components of SSS

can be not enough smooth
zcot Z functions of coordinates, since

the their borders derivative at
A(z) crossing of section of various

phases of materials will can to
have ajumps. It resultsjumps a

.. C(1 O-0) component tensor of stresses.
The differential

"Y equations of equilibrium (1)
has only the local classical

- -- -" :, decision inside each
"homogeneous area Ak It has

X not decision in a classical sense
for the whole piece-
homogeneous area A. At the
same time, the rigid contact of
various phases of materials
means a continuity of

Figure 1 Piece-homogeneous beam. displacement of points whole
bodies. From finitely valued of
energy of deformations
follows, that the stresses in

composite beam should be local integrable functions [2]. Thus, the equation (1) can be
considered as the equation containing the regular generalized functions.

We shall define generalized Heaviside step function as
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0, (y,z) VA

O(y z) = / 2, (y,z) ETA (2)

11, (y,z) EA

We shall consider first equation( second similarly ) from in (1), designating of stress by
the symbol ox without the top index. The equilibrium of the area about A (z)_gA, lying below to
direct z=const ( Fig. 1 ), is described by a local element of a equation (1)

f(Crxx + Z zxx )OA(z)dA = 0 (3)

R2

,- is the plane, which belongs section A; OA(z) - characteristic function of area A (z).
The elastic characteristics of materials, from which produced the piece-homogeneous

area A, present uniform expressions for whole area as

E =(E- EO)Ok + E00

G=(Gk -GO)Ok +GOO4

0, Ok - characteristic functions of areas A, Ak accordingly. The representation (4) 'permits to
avoid at numerical realization of the theory to integrate on the multispanned area A0 .

We accept as hypothesizes [I], that displacement along the axis CX is u=u(x,z) , along
the axis CZ is w=w (x), and tangential stresses are distributed under the law

dlx(x)f(
T X (ZX) = -(5) dx f(Z(5

X(x) - unknown, so named function of shift, and f(z) - function of distribution of tangential
stresses [1]. This function, according to [1] and (4), has a kind

1 if
f (Z) JEOA(z)zdA (6)

R2

b (z) - size of the area A along direct z=const.
After transformations of a equation (2), in view of properties of generalized functions

and known rules of the theory of elasticity, we receive

b(z)ft(x,z)=- f zxzipA, nzdydz- EO A( U dydz (7)

A (z) f Az) .
R2 R2
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b(z)u(x,z) f uS nzdydz-

R2 (8)

- Wx JO A(z)dydz - %,x •O A(z)G f(z)dYdz
R2 R2

Crx =E E0

S - generalized function "a simple layer" with the carrier FIA(z) - part of a border of
F'A(z)

the area A(z), lying below to direct z=const; nz - projection of the unit external normal to

FIA(z) to the axis CZ.
Augends in (7) and (8) contain boundary values accordingly tangential stresses rxz and

displacements u on the border IA (z) , which is determined by a type of a boundary problem.

DEFINITION OF UNKNOWN FUNCTIONS

The necessary condition for a minimum of potential energy of a considered body can
be written as:

/ 1

J 0[ x5s6x + xz,5 z ]dxdA - fqswdx = O (9)

0 R2  0

In (9) q(x) - density of the bending load. The variations of deformations Sex, 85yxz and
displacement &w are independent. The expression (9), pursuant to these condition and (4)-(5),
acquires the kind of the system of differential equations

DI 1 wýxxx (X) + D 12 Z,xxxr (X) = q(x) (10)

D 2 1w, xxx (X) + D 22 f,xxxx (X)- D 23 z,xx (X) = 0

The system (10) is supplemented by equations

5W, (x(){B12 (z)N(x) - M )}1=0

w,(x){B 12 (z)Nx(x) - Mi (x) / = 0

0
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=09X,x (X0{13 (z)N(x) - MI(x) [0--

(5Z(x){B13 (z)N,x (x) - (M~x (x) + Q,,x (x)}lo = 0 (11)

depending on a kind of a boundary problem for the beam.
In expressions (10) and (11) Dj j, , D12,, D21 , D22 , D23- are constants and B 12

B 13 - are functions, determined by boundary, geometrical and mechanical properties of beam.

N- a force, M- a bending moment, M, Q - a high-order moments [1]. In general case forms
of expressions for these quantities are a bulky kinds and are not here resulted.

REALIZATION BY METHODS OF COMPUTER ALGEBRA

The realizations of the theory are distinctions:
- obvious kind of the used analytical expressions depends from particular problem ( system of
coordinates XYZ, in which is calculated SSS, is determined by properties of a particular
researched body; - the characteristics SSS are calculated as integrals on the area A (z), the
structure and form of a border of which is determined significance's z; - SSS is defined
predicative relationships owing to piece-homogeneity of a structure of a beam, the form of
which depends on geometrical properties of areas Ak and etc. ). The well-known programming
systems are oriented to processing of numerical models. The form used thus analytical
expressions should be static. In this connection, for realization of the theory a system of
computer algebra ANALYTIC [4] and principles of programming, described in [5] are used.
The set of expressions of the theory is considered as object with a hierarchical structure, which
is ordered by a substituting operation. By initial objects for formation of a obvious kind of
expressions at each level is a obvious kind of expressions at the previous levels. On such
structure the ANALYTIC does not impose any semantic restrictions and it correctness is
completely determined by initial data and program. Initial data for problems, within the
framework of the described theory, is reasonably the complete information about geometric
properties of areas Ak and elastic constants. On the basis of this information analytical
equations of areas Ak, then obvious kind of expressions (4), then (6) and etc. are formed. The
last level of this structure is expressions (7-8). Their obvious kinds are the output information
of the programs. A high level of intelligence of means of a system the ANALYTIC for
recognition of properties and transformation of objects, as well as representation predicate
expressions by generalized function, permits to create effective algorithms for automatic
realization of all calculations, including symbolical. Dialogue mode of operations is if
necessary possible.

For demonstration of application of such technique we put example:
Consider piece-homogeneous beam (fig.2) of rectangular section A (E0 =13, Go =5) with
two rectangular inclusions A1 and A 2 ( El = E2 = 140, G1 = = 50). The sizes and
elastic constant are given in conditional units. The results are shown on Fig.3.

337



q=l 0. 2

u =O, -- ----------------- "
S2

' I=1 K I

a)
Figure 2. Beam under in a regular intervals distributed

load:
a)- general kind; b) - cross section.

b)

Figure 3. Space distribution of longitudinal
stresses ax in section of the beam (Fig.2) near the clamp

-.1.203

REFERENCES

[1] Piskunov V.G., Verijenko V.A. Linear and nonlinear problems in the analysis of laminated
structures. Kiev, Budivelnyk, 1986, 176 p., (in Russian).
[2] Parton V.Z., Perlyn P.I. Methods of the mathematical theory of elasticity. Moscow, Science,
1981, 688 p., (in Russian).
[3] Vladimirov V.S. Equations of mathematical physics. Moscow, Science, 1971, 512 p., (in
Russian).
[4] Morozov A.A., Klimenko V.P., Fishman J.C., Bublic B.A., Gorovoy V.D.,Kalyna E.A.
ANALYTIC-93. Cybernetics and system analysis, Kiev, No 5, 1995, p.127-156, (in Russian).
[5] Lyakhov A.L. Synthesis of a equation a piece-smooth flat line by methods of computer
algebra. - Problems of mathematical machines and systems, Kiev, 1997, No 2, (in Russian).

338



SOLUTION OF DYNAMIC BOUNDARY
PROBLEMS IN A CONTINUOUS ELASTIC
CURVILINEAR ANISOTROPIC MEDIUM

WITH A SPHERICAL CAVITY

Yuriy A. Rossikhin and Marina V. Shitikova

Department of Theoretical Mechanics,
Voronezh State Academy of Construction and Architecture,

ul.Kirova 3-75, Voronezh 394018, Russia
Tel/Fax: +7-0732-773992, E-mail: MVS@vgasa.voronezh.su

Summary. The ray method for solving boundary problems involving the propagation of surfaces of
strong discontinuity in curvilinear anisotropic media is developed. The method employs the solution
behind the surface of strong discontinuity whcih is constructed in terms of power series (ray series).
Shock subjections to boundaries of cavities in transversely isotropic bodies having spherical anisotropy
are investigated.

1 Introduction

The definition of the curvilinear anisotropic material, i.e., the material whose anisotropy conforms
to the shape of the body, is given in Love (1927), where it is demonstrated that curvilinear
anisotropic bodies have the same types of symmetry as common anisotropic bodies.

Curvilinear anisotropy is introduced by artificial means as a result of the design of elastic
objects from various laminated composites (Jones,1975; Chou and Ko, 1989).

Static problems for bodies with curvilinear anisotropy were studied by Lekhnitsky (1963) and
Conway et al (1967). Dynamic problems concerning harmonic vibration and wave propagation
were examined in Mitra (1959), Ohnabe and Nowinski (1971), and Toshiaki (1990), where as
curvilinear anisotropic bodies were used plates, cylindrical bars with cylindrical anisotropy, and
thickwalled spherical shells with spherical anisotropy, respectively.

In the present paper, boundary value problems concerning the propagation of nonstationary
volume waves in curvilinear anisotropic media with spherical anisotropy are studied by applying
the ray method (Rossikhin and Shitikova, 1995) based on the theory of singular surfaces (Thomas,
1961).

2 Governing equations

Consider orthogonal system of curvilinear coordinates x, = a, xp - f, x- = y. With reference to
these coordinates the motion of an elastic body is described by the following system of equations:

-(H 2H3aa.) + -(IHHH3oH.#a ) + -(H( H 2HOr.-r) - CPO H3 2H 2 _-y-1 2" ýH

811'H(91 8afH~a~ PaV. (11Ha 'y (2.1)+ = p----÷H2H-s at 1 2 3
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Hereafter the symbols (a,#3, 7) and (1, 2, 3) denote that the remaining dependences are
obtained by the circular repositioning of the indices, H1 = Hi(a, P, -), H 2 = H 2((a, l,'y), and
H3 = H3(a, 8, -y) are Lam6 constants, o-ij and vi (i, j = (a, P, -y) are the components of the stress
and velocity, respectively, p is the density, t denotes time.

Assuming the coordinate 7 to be perpendicular to the plane of isotropy at every point in the
curvilinear body (transversely isotropic body), we ibtain the generalized Hooke's law

e. 1 ='- - y T, p = 1-y

=1 vu ' - e 1 (2.2)
p p• = • ( O 'P - V O -a ) - 0 ' f -, e -y = 0- y a ,

ii' 1 1V I=
e7y= --(O'Cac + O-P + Wk76yry, e~ = -~p

where eq (i, j = o,/f, 7) are the components of the strain; E, E' and P, P' are Young's moduli and
shear moduli in the planes which are parallel and perpendicular to the isotropy plane, respectively;
v and v' Poisson's coefficients characterizing the contraction in the plane of isotropy under tension
in the plane of isotropy and in the directions normal to this plane, respectively.

The components of the strain are related to the displacement components ui (i = a, P, 7) by
the relations

1 aua 1 OH1  1 OH1
-+ H1H 8,6Up±HH +u 23

y• H' ,-0• H,H, )t3 U•+H,H Hay0"u•

H,0 (1 H2 L9 (1 (2.()

ea~=1~jyT -\jpa \H j1 2 3)

3 Wave surface geometry

Suppose that as a result of some shock exposure to a medium having curvilinear anisotropy, a
surface of a strong discontinuity F, propagating with the constant normal velocity G is generated.

Let the unit normal vector to the wave surface be aligned with the tangent to the coordinate
line x,, and, moreover, H1 = 1 (this assumption is justified by the fact that the coordinate lines
x, are the straight lines for the most important practical applications). Then from the relations
given in Thomas (1967, sec.2.7), it follows that the normal trajectories to the wave surface EJ
(normal trajectory is the line in the space xi (i = a,,6, 7) at every point of which the tangent unit
vector coincides with the normal unit vector to E at the instant when the wave surface arrives
at this point) are the straight lines (v,, = 1, vp = yy, = 0) along which x, = Gt + x0 (x4 is the
initial magnitude of the value xa) but x# and xy remain constant and can be used as curvilinear
coordinates on E (Ivlev and Bykovtsev, 1971).

Hence, the condition of compatibility on the wave surface for the desired value Z, which
denotes one of the displacement velocity or stress components, reads

G[OZ,(k)lOa] = -[Z,(k+1)] + 6[Z,(k.)I/t, (3.1)

where the sign [...] denotes a difference in magnitudes of a certain value on different sides of the
discontinuity surface, [Z,(k)] are the jumps of kth derivatives of the function Z with respect to
time t, and 6/6t is the Thomas (1967) derivative.

To ascertain the validity of the formula (3.1), it is sufficient to check it for the jumps of
derivatives of the components of a certain vector or tensor, e.g., of the displacement velocity, with
respect to x,. There is not need to use the compatibility condition for the jumps of derivatives
of the same values with respect to x#3 and 2½, since these spatial coordinates are concurrently
the curvilinear coordinates on the wave surface. Using tensor relations in curvilinear spatial
coordinates [91

[8vj lox] = • Vi + rT Ivm] + g',gi, [vj,a1X O, (3.2)

GA = -[Ovjl0t] + 6[v1]/bt -. Grp[fvmv]v,
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and eliminating the values Aj from (3.2), we obtain

G[avjl(x'] = -[avjlat] v + vjb[vj]/6t - GrT[viovi + GrT[vm] + GgaOgjk[vj4]x', (3.3)

where vj are covariant components of the velocity vector, Aj = [vi,k]Vk, vi and v' are the covariant
and contravariant components of the normal unit vector tothe wave surface, respectively, gij and
g,, are the covariant components of the metric tensors in the space and on the wave surface,
respectively, rM are Christoffel's symbols in the space, an index after a comma denotes the
covariant derivative with respect to a corresponding spatial or surface coordinate, Latin indices
take the values 1, 2, 3, Greek indices take the values 1, 2, the summation is performed over
two repeated indices, xi and uO are curvilinear coordinates in the space and on the wave surface
respectively, and x' = Oax/auo.

Setting xi = = a in Eq. (3.3) and invoking the above assumptions, Eq. (3.3) takes the
form

G[avj10a] = -[c9v•/lt] + 65[v]/6t. (3.4)

Consider

Vj = Vph,'H 3 and 6Hjl/t = GOHj/&a.

where v phys = V ,phys = -vp, and v hys = v7, and on replacing vj by Vj,(k) in (3.4), we obtained
the condition of compatibility (3.1) for vPY.

Note that the compatibility condition (3.1) for the components of the desired values on the
curvilinear surface E in the curvilinear coordinates is coincident with the compatibility condition
for the corresponding values on a plane wave in Cartesian coordinates as the plane wave propagates
along one of the coordinate axes.

4 Recurrent relations of the ray method

The solution for the desired function Z behind the wave surface E is constructed in terms of the
ray series

Z=--(t -t.)k[Z,(k)]Ijt, H(t - t), t, - X (4.1)
k=O

where H(t) is the unit Heaviside function.
To determine the coefficients of the ray series for the desired functions vi, uij (i, a , /3, y),

we differentiate Eqs.(2.1) k times and Eqs.(2.2) and (2.3) (k + 1) times with respect to t, take
their difference on the different sides of the wave surface and apply the conditions of compatibility
(3.1). As a result we obtain

(pG2 
- cl)[va,(k+l)] = -2cjL[v,,(k)1 + fa,(k) + Fa,(k-1) (4.2)

(pG2 
- P)[vA,(k+1)] = -2/pL[vP,(k)1 + fp,(k) + F#,(k-1) (4.3)

(pG 2 
- p')[v,,(k+l)] = -2p'L[v-,(k)j + fy,(k) + Fy,(k-1) (4.4)

where Lu = ul/bt+ 1/2 Gu8ln(H2g 3)1Oa, C1 = 1/2b+/u, b = (1-v)/E-2V' 2/E', the functions
fi(k) and Fi(k-.) are dependent on the discontinuities of the kth and (k - 1) order, respectively.

At k = -1 the recurrent Eqs.(4.2)-(4.4) govern the three types of nonstationary waves: one
quasi-longitudinal and two quasi-transverse waves propagating with the respective velocities

GM = (c,/p)1/2, G(2) = (j'/p)/ 2 , G(3) = (P'/p)1/2 , (4.5)

where an upper index in brackets pertains to an ordinal number of the wave.
It follows from (4.5) that in curvilinear anisotropic body only those waves, whose symmetry

conforms to a symmetry of the considering body, propagate with constant velocities.
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To apply the obtained formulas of the ray method to pseudo-isotropic bodies having spherical
anisotropy, we set a = r, fl = 0, 7 =p, H2 = r, and H3 = rsin0. Then Eqs.(4.2)-(4.4) take the
following form:

(pG 2  CI) 6[Vr,(k+) -= -2c, [Vr(k)] r [V,(k)] _G (/ + ca) cot O[vG,(k)]

G (P + C2) O0vO,(k)] + C3 + (-1)
-r 09 sin 0 J-• i

(pG2
- ]A)[v0,(k+l)] = -2A1 6

[V6,(k)] 2_ [V0,(k)] +- ((C3- C2 ) Cot O[Vr,(k)]6t rve() r (3- Lr()

-(C2 + P) OilVr,(k)] + FO(k1) (4.7)

(pG 2 
-I') [V,,(k+i)= -2/z' 6 [v',(k)] - 2 [v,(k)] - G C3 + P1' O[V,(k)] + Fp(kI) (4.8)

(PGr-b')[)( sin=02]A'kt iino (48

where

62[v,, (k-i)] a ( S[Vr,(k-1)] C 3) Cot0 [ve,(k-i)1] 0 C [vo,(k-)i]

F(k-i)i = 6t2 + 2- 1 2C6c•FO-t- 6(p-c2)-

+1+3_)_+ G2 ( ]A cot 0 [Vr,(k-1)] 02+[Vr,(k-1)]
sin 0 0 io 2 -a o 0 02

+ It, 0
2 [V,,(k1)] O[Vo,(k-1)] C4 "+-P' 0[Vp,(k-1)]N

sin 2 o 0['2 (p + C4 ) cot O[vo,(k-1)] - (3,u + Ca) 09 sin 0 OW

Y2[vo,(k-1)] + G (2p 6 [vo,( +)] (C2 - C3) Cot 06[Vr,(k-1)] 0 +2 [Vr,(k -1)]\
FO-)= t 7 r bt ft 0+ (11+c2) b 77 }

G O[VO,(k-i)] 02 [vO,(k-i)]
+4rG2 (C3 + 2/t + C4 cot

2 
0)[Vo,(k-1)] + C1 cot 9 09 + Ci 002

92 0[VO,(k.i)] 
__[__,__-_)]

+ 2[ý-] + (cl - C4 ) cot 0[Vr,(ki1)] + (ci + c3 + 2P) [o-Fsin. 9 0•2 0

(C4 + P') cot 0 o[V,(k 1)] + c3 + fl' ( 2 [vp,(k--)]
sin 09 O sin 09 }9 '

,_2[VW, _(k-1)] + G ( 2 1', ,[vo,(k-1)] + P' -+ c3 0 6[V r,(k-1)]

F• (-_• = +A 2 -- (]
sin r R sin 0 +O 6 9

+G 2 I'e f,(k1 + C4 a2 [V w, (k_- 1)] + P Icot 0 [Vpo,(k-1)] +A 0U/ 9 [vw,(k_-)
+2(_Si2 sin2 0 o a2W 0 a02

+ C3 + C4 + 2u' O[Vr,(k-1)] + (C4 + P') cot 090[Vo,(k-1)] + C3 + 1A' 0 2 [VO,(kil)]

sin 0 •op )sin 0 aw sin 0 10Oc0p

where c2 = ci - 2/t, c3 = V'/b, C4 = E' + 2V'c 3 , and c5 = 21u + Ca + C4.
Putting k = 0, 1 in Eqs.(4.6)-(4.8) yields
on the first wave

[Vr,(o)] = C(o)(O, )r-1, [VO,(o)] = [V,(o)] = 0
G( - Cco C() G GC3+'

[vo,()] = + cot 9 C(o)) , [vC,(i)] - r2 cl - pI sin 0 c(o)1
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1 G1 _ c___

[Vr,(1)] = c(i)(, cp)r-1 2 r
2 

C(o),e + cot 9 C1

2 r2 I COM + -~sin2 0 C c(C1 -. I ~o,

- (cot29 (C 3 -C 2 ) + c 1+ C4 C(o) (4.9)

on the second wave

[vo,(o)] = g(o)(9, p)r-', [Vr,(O)] = [V ,(o)]= 0

[Vr()] = G g(O),o + c3 + i cot 0 g(o) , [V,0)] = 0

(C 1 - I ) I-

[vg,(i)] = g(i)(0, Q)r- 1 - G { [cot0 ((P +c 3)(c3 -c 2) i+cI -C4 g(o)[v°'(•)]2 ()(' ) r-• 2, (Cl - /.I)p P

1 PI• }

+ cot 0 g(o),o + 9(0),00 + sin 2 0 -p9(o),, (4.10)

on the third wave

[v~o,(o)] = h(o)(, ýp)r-', [Vr,(O)] = [vO,(o)] 0

G C3 +GU' 1
-r / -= sin h(o),, [vP,(1)] =0

[vh,(i)] = h(i)(0, (p)r- 1 G 1 h(o) + cot 0 h(o),o + h(o),oo

1 Ic 2 (c+i) 2
0

+ (C4 -('(c3-,/')) h(o),•pW; (4.11)

Substituting the known jumps (4.9)-(4.11) into the ray series (4.1), we determine the relations
for velocities behind each front of the three waves and their superposition gives the solution we
are looking for

r r-a) + (i_1G(__c(), 0+co 0C

V, = c() H GM G (1)_r 2 r2  C(o),o + sin 2 0 c(cIl) C(O),pp
r (

(c3-C2)2 C1 + r - a ()
i(C2 0 -'--)+ cl c) c(o))I (t -.4 .1,) H r-a

(2) (go), + C3 + P cot g(o)) (t r- H (t r- )
+_c1 - /I( )) t G2

cC3 +' 1 _ nh(o), H t ra (4.12)
r2 C - [t, sin 0 h(o),\ GM3) G(3

Vo =(°) Hr t- r -a) + {g(1)r 1 G (2) (cot 0 ((P +c3)(c3 -c2) + IL +C3-C4) 1) 9(0)

1 r -r-a ) ( r-a)
+cot 0 g(o),o + g(o),o + sin 20 9(o) ,Wp )t --G2-(-2) H

+--(1)-c(o),o + 7e3 cot 0 c(9 ) t ___ H t - ) (4.13)

V= °) r--a) + Ih(l) 1 G(3) 1 i24 =-(0)-)a 2 r - * h(o) + cot 0 h(o),e + h(o),oo

r (t G(3)) r 2 r sin4
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1 29 4 (C t2 h ow t _r-- a ") H t - - a+i_ at (c3 + /') P G(3)

GC3±+f' 1 ( r-a ( r-a\

r2c - P, sin 9 c(o), (t -G( ) H(t -G-(1) (4.14)

Three sets of the arbitrary functions c(k)(0, o), g(k)(0, ýo), and h(k)(0, ý0) must satisfy either of
two types of the boundary conditions

ViI.r=a = Vo°(0, so)H(t) (4.15)

or
0'ri lr=a = arz0(0, ýp)H(t) (4.16)

where Vj0(0, Wo) and o,°•(O, W) are given functions.
Substituting the arbitrary functions found from the boundary conditions (4.15) or (4.16) into

superposition of the ray series behind the fronts of three waves (4.12)-(4.14), we obtain the final
expressions for the solution of the boundary problems.
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1 INTRODUCTION

Many models of structures in composite materials are based on the notions of the linearly

elastic theory of anisotropic solids. Using three dimensional models allows to reveal pe-

culiarities in the stress and strain state which couldn't be detected by numerical methods

and approximate nonclassical (refined) theories. This is concerned with the existence of

great gradients of stresses and displacements, substantial anisotropic elastic features of

materials, local concentrated loads and also dynamic character of problems. For analysis

of such complicated models analytical methods are the most effective ones, e.g. such that

the method of initial functions (MIF).

MIF was proposed by A.S. Maliev [1] in 1951 and then it was developed and applied in

studies by his pupils and followers. One can find the most complete survey in [2].

The MIF is based on representation of displacements and stresses in a solid body in

terms of initial functions which are displacements and stresses determined on one of co-

ordinate surface (initial surface). Such a representation is realized by operators which are

power series on one of coordinate variables with coefficients in form of differential op-

erators. As a rule not all of the initial functions are known. They can be found satisfying

the boundary conditions on the surface which is equidistant to the initial surface. The

differential equations for finding the unknown initial functions can be solved by various

methods. Finding the solution in trigonometric series is the most popular one. In this case
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the problem is reduced to determining three unknown Fourie coefficients (for every

m and n in expansion). Such an approach is very convenient for investigation of layered

structures, because a number of unknown coefficients is equal to three and does not de-

pend on a number of layers in the structure.

2 BASIC EQUATIONS

The basic equations of the elasticity theory of anisotropic bodies in curvilinear orthogo-

nal coordinate system a,3•,r may be expressed in matrix operator form as

equations of motion

as + b1s1 + ClS2 + dW=O, (1)

Cauchy's relations

1 (aW +bW),
HH 2H3 ((2)

1
82 -- H cW,

62HjH2H3 W

generalised Hook's law

a 1 = PEI + •2 , (3)
U 2 = SG1 + TV2 .

Here , :={r, ra o err}, 2 ={O2(. a 7, I f, :r 8 Yf } E2 ={$ a 6 6q6},

W = {Ua V,6 WY

Matrices a, b,c, c, d - operator matrices which entries consist of the differential op-
erators , Lame's coefficients -,H2,-3; P,Q,S,T - matrices of the elastic

constants Ao.

Using these relations the equations of the mixed method are derived as

6rUO = DUO,

=(b+ -1Qc)+ 1  H3P-1+ )] (4)D = H I SH 2T •S ~ c

cl + C)- d 2(b 1
HH ýHIH2H3 d HIH3
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S2 = BUo,

B H 1  (SP'Q-T)c sP-lj (5)
B= HI[H2H3

Here Uo = {Ua U,6 Ur "ra "y,6 '7y

The methods of computational algebra enables the equations of the method of initial

functions to be derived as

U = LU0 , (6)

where L = [Lu], i = 1,2,K ,9, j = 1,2,K ,6 - the matrix of the differential operators of the

( 0 U0 0T0 r0 a 01 U =f (U U ~ U T U0o
method, Uo ua ur T., Ta r 6 8 ya = a fafl

The basic equations of the MIF for cylindrical shells or thick rectangular plates can be

written also in the form (6) but with other entries.

For circular cylindrical shells: U = {U,V,W, TIrz, 'rro, , 07o, rzo I

U 0  uO, VO,W 0 , 0co,Trz,ro L= [L,] LO. are operator-functions which are power

series in terms of the variable r; the entries of the vectors

U =fUuu a T r Uya a and U = uu'u'0r0u or' o.0 I are functions of thefl Y u a y,6 Y a fl ra Urra r,

variables r, 0, z, t. The main equations for spherical shells and shells with boundaries are

derived.

For anisotropic plates: U = {u, v,w, CTz , rZ, ax , ox , yxy

Uo =0 {O,rz , a', W0 , vo, ,U°, L = [LI ]I= 1,2,K ,9, j= 1,2,K ,6 are operator-functions

which are power series in terms of the variable z.
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A consideration of bound problems for plates and shells including layered ones allow to

state and solve the problems from a common position and, it is extremely important, to

estimate for sure the accuracy of solutions. For a large class of problems this method

enables exact solutions to be derived without employing any hypotheses about the char-

acter of the stress and strain state of the structures.

For example, exact governing equations of the bending problem of an anisotropic plate

subjected to the load on the top surface U. 0 TOz CO and on the bottom one

U+= az, Ty, + may be found in the form

IwuO=U + -V OaUc (7)

Uii , UJw={w°,v°,uO},Lw =[LJ =,i,=4,5,6;L, =[Lj]h,i=4,5,6,J= 1,2,3 are the

matrices of operator functions L. determined when z = h.

Expanding the initial functions U0 and the load functions U÷ into the trigonometric se-

ries, the system of differential equations (7) becomes the system of the three linear alge-

braic equations for finding the unknown coefficients in the expanding of unknown func-

tions U0 .

Using (6), main equations of the MIF for analysis of laminated composite plates and

shells may be derived. The layers are assumed to be perfectly bonded such that the inter-

face conditions at any surface are expressed as

{kz k k Wk k k) .,~kl kx 1, k 'O' W ,+ V +, U k ,

{ 7 lyz,O',WkVkUk } Tkl k±l ,k+1 kl k±1 k+l

where the superscript k refers to the k -th layer. No one restriction on the thickness of

layers, the number and sequence of layers, elastic constants and densities of layers is im-

posed.
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The basic equations of this method for analysis of multy layered plates in composite ma-

terials are

Uk LkLk-1 L~L! U0  (8)

where U0  ,yz Cy 0, , 0, 0° - a vector of initial functions determined on the

coordinate plane z = 0, U = {u,v,w,cr7 , 9 ,Tyz ,a y ,y } - a vector of displace-

ments and stresses, in the matrix Lk the operator-functions L~i are calculated for

z ( [0,hk] and with elastic constants and density of the k-th layer: Aý pk (for static

problems Ot =0 or pk =0); I1-PL =[l, n=(k-1)K1, i=6K1, j=IK6 -the ma-

trices of the operator-functions when z = hM, m=(k - 1)K 1 [3].

3 NUMERICAL RESULTS

Using the main equations two programs were designed: MIFTP for plate analysis,

MIFTP for shell analysis. As an example consider a square plate with dimensions a x a

and a thickness h/a = 1/3. The plate consists of ten layers: leer 1, isotropic,

E=0.315 ' 105 , v =0.2, p =2500; layer 2 , transversaly isotropic, E = 10 , E/E'

= 5, E/G'=20 v=v'=0.1,p=2000; layer3 isotropic, E=0.72105 , v=0.33,

p =2800; layer orthotropic, Ex = 0.46'10 5, Ey = 0.16 10 5, Ez = 0.112"10 5,G

xy = 0.056 " 10 , vxy=0,27, vxz=0.07, vyz=0.3, p =1600; laver 5 , as a layer 3;

layer 6, transversaly isotropic, A= 104, A/A'=3, E/G'=5, v = v' =0,1 , p =2000;

layer , isotropic, A =2. 1105 , v =0.3, p =7800; layer 8, continuously nonhomoge-

neous, A = Ao.'SY, p=poA°'°z, v=0,2, E0 =104,p 0 =2000; layer 9, isotropic,

A=0.008 10', v =0.47, p = 1200; layer 10, as a layer 1. The dimension of Young's

modulus is MPa, densities - kg/m3. The layer thicknesses: hl/h=0146,

h2 /h= h1 l/h=0.0976, h3 /h= h5 /h= h7/h=0.0244, h4 /h= h9/h=0.0488,

h6 /h = 0195, h8/h = 0.293.

The load in a static problem is q=qosin(amx)sin(flJy), in dynamic one -

q = qo sin(amx)sin(flny)ei't ,o) = 3000s-1, am = mfr/a, 8l, = mr/a, m = n = 1.
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Some graph results are presented: Fig 1. (static), Fig. 4 (dynamic) displacements u in

the section x = 0, y = a12 ; Fig. 2 (static), Fig. 5 (dynamic) cr, when x = y = a12 (the

center of the plate); Fig. 3 (static), Fig. 6 (dynamic) z-. when x = 0, y = a/2.
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Table 1

m,n 1,1 1,2 2,1 2,2 5,5 15,15 27,27 38,38

0)* 1,8733 6,0821 6,1006 4,7793 20,4711 60,5255 84,1127 85,6951

The equations (6) allow to solve problems of investigation of the SSS of circular and

spherical thick composite shells under static and dynamic loads. For example, consider

the problem of the analysis of 10-layered circular shell under moving inner exponential

load (Fig. 7). The character of the strain state of the wall of the shell when the wave

velocity is equal to 10OOm/s is shown on Fig. 8.

U-I-k

m-..h

o? R RO

h. .... . ...................................

Fig. 7 Fig. 8
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COMPOSITE PLATES WITH UNDULATING

SURFACES

MARIA KASHTALYAN

Timoshenko Institute of Mechanics, Nesterov str. 3, 252057 Kiev, Ukraine

ABSTRACT

Three-dimensional stress-strain analysis of laminated plates with interfaces,
the shape of which is slightly perturbed and may be described by sufficiently
smooth function of two variables and small dimensionless parameter, has been
fulfilled. Using the method of perturbation of boundary shape based on repre-
senting of stresses and displacements as series in respect to the small parameter
which describes the shape of interfaces, the initial three-dimensional problem of
theory of elasticity has been reduced to the sequence of problems for the plate
with perfectly flat interfaces. The influence of the interface shape (amplitude
of waving and value of the wave-forming parameter) on stresses and deflection
of isotropic two-layered plates under bending with periodically waved in one
direction interfaces has been examined. To obtain the numerical results with
sufficient accuracy first three approximations for stresses and displacements
have been proved to be enough.

INTRODUCTION

Mechanical failure of composites often results from stress concentration at the
interfaces due to the interface defects, imperfections and inhomogeneities in-
herited from the manufacturing process [1]. Imperfections of many varieties
such as layers of uneven thickness, wavy layers or undulated interfaces in which
nominally flat surfaces of the layers are developing during manufacturing, are
present in laminated composite structures. The adhesion between the layers
at the interfaces is not usually broken by the above-mentioned imperfections,
and therefore, they may be considered as geometrical anomalies but not seri-
ous technological defects to be necessarily to avoid.

The nature of these imperfections reflects the nature of surface evolution dic-
tated by the competition between surface and elastic energies. The nominally
flat surface of an elastically stressed body is unstable with respect to the for-
mation of surface undulations of wavelengths greater than some critical value
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[2]. The amplitude of these perturbations is sufficiently small in comparison
with structure length scales of the composite material structure. However,
they could be so important in determining the response of composite materi-
als that steps must be undertaken to understand their role.

For analytical description of deformation of macroscopically inhomogeneous
solids like composite materials various kinds of continual theories have been
developed and used in mechanics of composites, in which inhomogeneous ma-
terial is modelled by the homogeneous anisotropic medium. Another approach
to investigation of mechanical behaviour of composites is based on the struc-
tural model, i.e. the model of piecewise-homogeneous medium.

The first attempts to examine the role which play geometrical imperfections in
the failure of composite material have been already undertaken within the both
approaches [3]. They were concentrated on determination of self-equilibrated
stresses in bulk composite material acting at the parts of the interfaces the size
of which is comparable with or less than length scale of material structure. At
this point the second approach is more advantageous, since structural model
allows to determine the above stresses more precisely. However, no investiga-
tions of composite structures like plates or shells with geometrical interfacial
imperfections has not yet been made.

The present paper is focused on investigation of stress distribution in laminated
plates with perturbed interfaces and on examination of stress redistribution ef-
fects due to this kind of geometrical imperfections.

PROBLEM STATEMENT

The problem statement is as follows. Laminated plate of finite dimensions
0 < x < a, 0 < y < b with surfaces and interfaces Si (i = 0, N) has been con-
sidered. External surfaces and interfaces are being treated as slightly perturbed
from reference state in which they would be perfectly flat. Their geometry is
assumed to allow description by sufficiently smooth function of two variables
which characterises the shape, and a small dimensionless parameter 6 which
characterise the magnitude of deviation from the appropriate reference plate
z = hi. The interface shape equations are then:

Si : z = hi + ef(x,y), (ho = 0, hN = h) (1)

Suppose the bonding between the layers is perfect, and continuity conditions
for stresses and displacements are fulfilled at the interfaces:

k : - + (oyt,k+a - 07ytk)nyk +
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+(Oz,k+l - Uzt,k)nz,k = 0 (2)

Sk : Ut,k - Ut,k+l = 0, (t = x,y,z) (3)

where ijt,k, Ut,k are stresses and displacements in the k-th layer k = 1.. .N; nt,j
are direction cosines for Si. Suppose plate is loaded by transversal load Q(x, y)
at the top surface with bottom surface free; boundary conditions at SN, So are:

SN : xt,Nnx,N + 0
1yt,Nny,N + t'zt,Nnz,N = Q(x, y)nt,N; (4)

So :xt,lnnx,o + Oyt,ily,o + azt,inz,o = 0; (5)

On the edge planes the boundary conditions of Navier type are assumed to be
fulfilled for each layer.

Due to the complexity of the geometrical shape of the interfaces the stated
three-dimensional boundary-value problem (1)-(2) cannot be solved directly,
and the method of perturbation of boundary shape [4] has been applied. Ac-
cording to it, stresses and displacements as well as components of load and
direct cosines in boundary conditions are to be presented as series in respect
to the small parameter E, i.e.

00

[Oji,k, Ut,k, Qt, nt,i] = 6Pi[:p)• , u,(p) Q$P),nr4)] (6)

and t(k and ° ar)

an jt,k (,u are supposed to be expanded in Taylor series in vicinity of
z = hi, so that on Si

1 6P E fq (qr(p-q) U(p-q)]l[ai,k, U,,]1• I Si P= 9= q! 1zit% ,k ) t,k Z,•--i (7)
p---0 q0

By means of this approach the initial boundary-value problem for the plate
with perturbed interfaces may be reduced to the sequence of recurrent boundary-
value problems for plate with interfaces z = hi.

NUMERICAL RESULTS

The analysis of stress distribution in two-layered free-supported plate under
bending with periodically waved in one direction interfaces based on the above
approach has been carried out. The load and shape functions were taken as
follows:
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Ist

so

a

6 S

Figure 1: Types of plate geometry: a (at the top), b (at the bottom)

Q(xy) = -qsin 7rX sin --y
a b

f(x,y) = f(y)=±hcos 7 (8)
b

where w is a parameter of wave foundation. The layers were considered to be
isotropic with shear moduli Gk and Poisson ratios v1 = V2 = 0.3. For solving of
the obtained recurrent boundary-value problems Youngdahl's general solution
of equilibrium equations [5] has been used.

Numerical results for the values of o'xx,l/q at the middle of perturbed interface

S (c = 0.1) in comparison with the appropriate data for the plate of the same
dimensions (h/a = 3, h/b = 18, hi/h = 0.5) but with perfectly flat interface
z = h, are given in Table 1. These data, i.e. u7*,1/qfz=hj, are being the ap-
proximation of the 0-th order in the considered problem; the other results have
been obtained using approximations up to the third orded and, hence, have
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the accuracy of 0(c3). Stress analysis has been made for two types of plates,
the profiles of which are shown on Figure 1 (for w = 2).

Table 1.

a b

q G2

_7s1IS 6,% q Is ,%

2 -8.085 -7.099 -12.2 -6.620 -18.1
6 -8.085 -8.716 7.8 -6.204 -22.2 10
10 -8.085 -9.641 19.3 -5.340 -33.8

2 0.820 0.660 -19.5 0.737 -10.2
6 0.820 0.630 -23.2 0.900 9.7 0.1

10 0.820 0.540 -34.1 0.993 21.1

From the obtained results the conclusion about strong influence of the param-
eter of wave foundation and geometrical type of the plate on values of stresses
at the perturbed interface can be made. Increasing of wave foundation pa-
rameter may increase as well as decrease the value of stresses depending on
geometry of interface and shear moduli ratio.
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THERMOELASTICITY OF SPATIALLY REINFORCED
COMPOSITE PLATES

E.V. Morozov
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INTRODUCTION

Implementation of composites with spatial orientation of reinforcement has
necessitated and resulted in the formulation and analytical use of new theoretical
models suitable for the analysis and design of composite structural components. The
main objective of this paper is the development of a thermoelastic plate theory, which
could be applied to the analysis of spatially reinforced thin-walled composite
structures. The governing equations of such a theory should take into account the
basic features of material structure and the number of effects such as transversal shear
deformability and general anisotropy of physical and mechanical characteristics. This
is achieved by introducing special averaging procedures for mechanical parameters
such as transverse stresses and strains as well as for physical characteristics of thermal
conductivity and heat transfer. As a result the system of equations produced on the
basis of the proposed formulation provides the possibility to analyse the stress-strain
state of spatially-reinforced composite plates subjected to mechanical and thermal
loads.

MATERIAL STRUCTURE

Consider a spatially-reinforced element of the composite plate of thickness h. The
coordinate axes are x1 , x2 and x3, where x3 is perpendicular to the plate, with the
original lying in the reference surface of the plate as shown in Figure 1.

X2

X,/

Figure 1. An element of a plate in an orthogonal reference system
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The bottom plane of the plate is situated at the distance e from the reference surface.
The plate consists of a spatially oriented orthotropic layers. The material coordinate

system is represented by axes x, , , x3 , where x, direction coincides with the fibre
orientation for unidirectional orthotropic layer or with the basic fibre orientation for
fabric reinforcement. As shown in Figure 2 the orientation of the orthotropic
elementary layer is characterized by three angles of reinforcement orientation b, /,
q [1]. Apparently the material with this sort of reinforcement orientation exposes a
general type of anisotropy of physical and mechanical properties with respect to the

x1,x2 and x3 system of coordinates. The variant of applied theory of spatially
reinforced shells has been obtained in Reference [1] by reducing the three-
dimensional elasticity theory equations to the two-dimensional system. The
hypothesis of free thermal expansion in the direction orthogonal to the reference
surface has been introduced. In this work the

x xl

X3 

/

Figure 2. Spatial orientation of the composite reinforcement

similar approach is used to reduce three-dimensional equations of thermal
conductivity to the two-dimensional ones and obtain the specific coefficients of the
thermoelastic theory of spatially reinforced anisotropic plates..

THERMAL CONDUCTIVITY ANALYSIS

The equations of thermoelasticity for the composite plate considered In this paper can
be derived on the basis of the approach implemented in References [1, 2]. Three-
dimensional coupled heat equation of thermal conductivity may be written in the
following form [3]

(A t,, ) j - tjlu ýi = CO - w, 1

where A. are the coefficients of thermal conductivity; t is the temperature; &?u are the

thermal physical coefficients of the material; e. are the components of the strain
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tensor; c, is the volumetric specific heat; 0 is the local temperature change ; w, is
the density of internal heat sources. For given system of coordinate x , x2 and x3,
related to the reference surface, the Fourier law of heat conduction is presented as
follows

0cqu = -AU0 --- (2)

where q, are the components of the heat flux vectors. According to Onsager's

reciprocal hypothesis the symmetry conditions should be satisfied, i.e. 2,0 = 2ji [4].

The coefficients of thermal conductivity 2A, may be expressed in terms of the

coefficients of thermal conductivity of the elementary layers 2'0 in the following form

2.. = 2"l.l.1.

where the coefficients l, may be calculated as follows [1]

1 =cosXcos ; 112 -sinXcos,; 113 =-sin4;

121 =sin z cos V/- sin V/ sin('cosz ;

122 = cos X cos V + sin V sin v sin 4'; 123 = -sin V cos,;
131 = sin V/ sinX + cos V/ cos Xsin,';

132 = sin V/ cos X- cos V sin X sin 4; 133 = cos V cos ;
iý= tan-1 (tan r/cosV/); X = •i + tan- (sin(tan V);

Substituting for 2,0 from (2) in the equations (1) gives

9 [qlj ++q12 +-q 13 ]+ - [q21 +q 22 +q 33]+
1 &2 (3)

+&•3 [q31 + q32 + q33]== t/Jod -c, + wt

Assume that the boundary conditions at the surfaces x3 = -e and x3 = h - e are given
in Newton's form

[233 -- + 232 + A31 ± +(XI [--(xlx 2 ,)]- ) (4)

where a± are the coefficients of the heat transfer at the top and bottom surfaces of the

plate; te are the environment temperatures at the top and bottom surfaces
respectively; r is the time parameter.
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The equation (3) and boundary conditions (4) together with the constitutive equations
from Reference [1] compose the corresponding initial-boundary value problem [5].
Since we consider the material with general type of anisotropy the flux component
qý (i 1 j) represents the heat flow which is directed along the axis xi and caused by
the change of the temperature in the axis xi direction.

AVERAGING OPERATIONS

Introducing the averaging operations for the fluxes q13 and q23 along the thickness
of the plate gives

h-e h-e

13 fq13dx3 , 23 q 23dx3  (5)
-e -e

or, correspondingly

q13 = - q23 = - "2 (6)
h h

The similar procedure can be used with respect to the average temperature change
along the thickness. As a result the following equation can be obtained

=h d• 3 3(7)

h-e &3

where ý is the average temperature change. Substituting for -- from equation (2),93

into (7) and accounting for the relationships (6) yields

R13 = A13 , R23 =A 2 3ý (8)

where R13 -R 3 , R23 = 2-R3 , and

( 1 -e 1I -'( h-e 1 ,-

13 A 1  JJ )23 A

Assume the following temperature distribution in the direction of x3

x 3

h

where To is the temperature at the reference surface. After integrating the equation (3)
with the boundary conditions (4) the following relationships may be obtained
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Al +),dF70+ 912 0 eW + 12 + 1
ok I o Al 2 - A 2

+ C~~~x1 ,x72 )T + A*x~2 2 -J'~x, 22 i

-2 + A-12 0 +3A22
ok 1 2 2k 2

-a (ý 2 IT - +(X IX I") -a (I A 2 2[ý - +- (xA 2 r

[3A*12 - + A;;0 + 3A;2 0 +A** !T ;

40T,

4T2' [A13 +A*, +A*,3 }B*+ 3C*(x, 2 TC*X, 2 TW,*(XI IX2 "r)

where

h-e 2 2 h-e

JA f 1 dx; d, y /Idx~ x Jxdx 3

hh-' X 2)

C=~ fc(1 x, 3 p~ 1 x, 3 d 3 Ch- c( 1 x, 3 px, 2 x)~X
e-

h-e 12363



--e

h 2 fc,(xjx2'x3)0(xI'x2'x3)x3dx3'

h-e h-e

h-e h-e

BY. =fl,6Utdx3 " = f 6fly6jtx3dx3;
-e -e

The number of variants of the coupled thermoelasticity theory may be formulated for
thin-walled composite structures. The set of equilibrium equations, stress-strain
relations, and strain-displacement relations should be combined with the equations
presented above, including the mathematical formulation of the boundary conditions
corresponding to different physical situations. Specifically, the equations (9) together
with the basic set of the relationships of thermoelastisity, presented in References
[1,2], can be used for the thermo-mechanical analysis of thin-walled spatially
reinforced composite components operating under thermo-mechanical loading
conditions.
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ANALYSIS OF STRESS-STRAIN STATE OF COMPOSITE LAMINATED SHELLS
AND PLATES BY THE SECOND ORDER SHEAR THEORY
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1. INTRODUCTION

Design of composite laminated shallow shells and plates is considered. This problem
requires special study because the effect of transverse shear have to be taken into account for
this design. It is known that the null-order theories are based on the linear principle for the
tangential displacements through the thickness and the first-order shear theories are based on
the cube law for these displacements [1,3,4]. These theories do not give the possibility to take
into account the inhomogeneouse of the shear deformations through the thickness of the
laminated composite structure (MO) and establish the linear principle for the tangential
displacement through the thickness of the laminated system. The additions of the third
component to the first-order model (M1) with the cube law for these displacements are taking
place. The full form of the equation (1.3) corresponds with the second-order model and
establishes the fifth degree of the distribution function.

The equations (1.1), (1.2), (1.3) and the corresponding tangential strains e,, and stresses
a ,/ form the shear second-order model of the stressed-strained state of the composite

laminated orthotropic shallow shell.
The Reissner's variational principle is used for the construction of the equations of the

equilibrium which takes into account the shear strains with the definite accuracy.
The refined shear second-order theory for the composite laminated shells and plates is

presented in this paper. In this theory the tangential displacements through the thickness are
based as law of the fifth degree.

2. PROBLEM STATEMENT

+ x,3= z A laminated shell of constant thickness and
q3 - q+ consisting of n homogeneous orthotropic layers is

honsidered. The shell is referred to an orthogonal
h2 curvilinear coordinate system (Fig. I). The model

h of the second order [3] is the base of an iteration
hi1 Xi step for the construction of the proposed theory.

The three-dimentional equations of the
lq q• equilibrium with taking into account of the

tangential stresses a,,j, (ij =1,2), of the first-order

model are integrated.
Fig. I. Layered shell fragment. As the result of this integration the transverse

shear stresses are obtained in the following form:
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Ca E(1) (z)Vf (x,,x 2)+ F (z)q, +±F3,(z)q- +
+FI2) (Z)2) (X , I2) 'c-+ Fi~j12) (z)(qf- + q_2.2. 11

i = 1,2.
These expressions are used as hypotheses for the derivation of the second-order theory.

Here Fp])(z) and E-QI F 2 (z), (p=l,2,3) are the known nonlinear distribution functions of the

stresses o',3 for the null- and first-order accordingly; V/11 (x,,x 2 ) and Vuj< (x,,x2 ) are the

unknown functions of the shear for these orders.
The hypotheses
e 33 = 0; "33 = 0. (1.2)

are taken into account too.
By the using of the hypotheses (1.1) and the Hook's law the transversal shear strains are

obtained. Then by the integration of the Caushy's equations the tangential displacements were
obtained as

-,=V - Z ;14", 1t •~(I) V / '()( )/2u Vi , , -p (1.3)

i = 1,2; p = 1,2,3.
The summation is assumed over subscript p.

(s)
The equation (1.3) includes the unknown displacements v ,,w and function of shear • ',,

(s=l,2) and the known functions of the loading too:
(/1 1) .. ( I1

V/ 2,1 = q i W? = q7; ( .4)

=2 :(q 1. + q-, ),, = (q, +

The distribution functions for the displacements (1.3) are given by

.") (z) = -JG,-' F =(z)dz;s =1,2. (1.5)
0

The first and second components of the equations (1.3) are corresponding to the null-
order model equilibrium and boundary conditions.

The equations of equilibrium are given by
N,.,, + q, + q,. = 0;

M,.,,., -k,.,N,., -(q-h 1 -q+h, ),,. +q3 = 0;Mll// k (1.6)
MCS) + VS)+q •', ,+,-,

+, + q,.'f") (h) +- qf.l) (h2) = 0:

r,t = 1,2;g = r;s = 1,2.

and boundary conditions are written as
N, =N,,,&I = 0; M,. = 0;

[( A,,,,,,, + 2 M,,,.,) - (q,7h, - q,,h_ )]0i = 0; (1.7)

MI,, -,, ....0; M,(,) ' = 0;s = 1,2.
Here n and 1 are the normal and tangential directions to the boundary.

The equations (1.6) and conditions (1.7) with the index s=1 are corresponding to the first-
order model and with index s= 1,2 - to the second order model.

The system of the governing differential equations is received from equations (1.6) by
using of the relations of elasticity. These relations are expressed in terms of functions of the
unknown functions of displacement and shear. The system of the equations is given in the
matrix form as
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Lkpf =~ R r ; k, p 1 ,...,7;f 1,...,5. (-1.8)

Here LkP is the matrix of the differential operators of the vector of unknown functions
V= { Vl 2, w4, V/t/) I 12a• (1) 11(2), 12 ( 2) }T; (1.9)

R.f is the matrix of the operators of the vector of given loads

4 = (ql+, q2', qi, q2-, q3}T. (1.10)
The general order of the system of differential equations (1.8) equals 16. Therefore, 8

boundary conditions (1.7) have to be satisfied on each edge of the shell or plate. In the case
MI the order is 12, and for MO the order equals 8.

The second-order model of the stress-strain state and corresponding equations of
equilibrium, the boundary conditions and the system of the governing equations form the
second-order shear theory of laminated composite shells and plates.

3. NUMERICAL RESULTS AND ANALYSIS

The analytical solution of the system of differential equations (1.8) is possible for the case
of a supported shell or plate with a rectangular plan view. The solution is given by the
trigonometric series. On the base of this solution the stress-strain state of some type of the
laminated structure is performed.

The sinusoidal load is implemented. In this case the exact solution basing on the three-
dimentional model (MT) is known.

The transversal-isotropic and orthotropic three-layered plates and shells are examined.
The most essential refinement into the stress-strain state is received for the three-layered
structure with a thin light layer. The diagrams of the transversal shear stresses and tangential
normal stresses for three types of models - MO, Ml, M2 are given in Fig.2. These diagrams
have the essential refinement and only the results obtained by M2 are corresponding with the
three-dimentional solution - MT.

6. 610 ob ,61 16sq
0 1.78 0 440(5.29-MT) 5.30(5.29- .T)

0.4,5h ~. .323
F t s o2.64 1 p7.5(7.,) 2.28

.4390.1lh :>': 0.801 2.8 (5.18) 4.39(5.18) I 0385251)527(5,18)
X .80.004 0.005

0.45h 1.9I263 I 757.)23

aJh=3 0 1 .78 04.40(5.29-MT) 0 M2 5.30(5.29..T)
MO-- I _ M1 - - -j

F~g.2. Stress in the three-layered transversal-isotropic plate.
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10 Wmax - ;7f=1% 4 xq - =9%

MT
4- M1 7

2 d M2

10 100 200 300 400 500 10 100 200 300 400 500

Fig.3. Results comparison tbr three-layered plate according to the different models.

This correspondance have place for a wide range of the shear modules tangential/normal
ratio (G/G' = 10 ... 500).

The comparison of the limits for M1 and M2 is given in Table 1.
Table I

G/G'
a/h> M I M2

homogeneous plate
•3 10 50

5 •20 100
10 •50 500
20 •100 1000

three-layered plate with interlayer
3 50
5 - 100
10 •1 0 500
20 •<100 1000

The comparison of the results M I and M2 for the orthotropic three-layered (00/900/00)
plates is presented in Fig.4. Only M2 have the correspondance with the three-dimentional
solution - MT.

qo. 106 613/q f qo ClOq 0 631 6111%
q 0 0 73(48-MT) 0I 49(48-MT)

0.25h 4(14) 40(17.-- •14(4.3) - 14(14) 16(17--. 44 0.13
5.8 0.454(26) 6.6) 0.326(26)

0.5h . 5.9(6.8) -. 6.8(6.9) -,

54(26) 7.I 9) 26(26)

0.25h (14) 14(1.3) 40(17) 14(14) 1_-17)

Ah=5 7 3(48-MT) 0 49(48-MT)
yE2 =100 M1----- -- M2

Fig.4. Stress in the three-layered orthotropic plate.

Series of the problems for orthotropic composite shallow shells is solved. The results for
the five-layerer (0°/900/0/900/0°) system are given in Fig.5 and Table 2.

As for the preceding cases only M2 gives the correspondance with MT.
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E,-1=OOE2; G,= G,= O.E2 ;

- ~~G,= 0.04E,; 1=2;

"X a a• xh = a/10; h/R = 0.036

q°= 1061, 6l2 /q 106Jq
83 01.71

01h716 880.
0.17h X 312 21

O .1 6 1 47 2 7 - , 0. 7 . -

0 25h 5 21

07h1 16 2.7 0.
89 0.7

/ig. 5. Stress in the orthotropic shallow shell.

Table 2. The comparison of the results for five-layerer plates (r= oo)
and shells r=4 and r=2) with thickness h=a/5

r Model Wmax 0- I"22

Splate M O 0.76 15.0 10.0
oo plate M1 19.1 55.6 65.5
o plate M2,MT 25.0 48.0 47.0

4 Ml 18.4 54.1 63.7
4 M2 23.8 46.5 46.4
2 M1 16.7 49.2 57.9
2 M2 20.8 41.3 41.2

The numerical results and their analysis show the high exactitude of the second-order
theory for pliable to the transversal shear composite laminated plates and shells.
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BUCKLING BEHAVIOUR OF LAMINATED

COMPOSITE PLATES UNDER THERMAL LOADING
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ABSTRACT

A thermal buckling analysis of composite laminated plate is studied using the Finite Element Method.

The effects of transverse shear deformation are accounted for by the use of the Mindlin first-order shear

deformation (FSDT) theory on a plate of rectangular construction. The plate has antisymmetric

lamination with respect to the middle plane. The intermediate class of deformation is employed for this

non-linear analysis. The first variation of the total potential energy establishes the equilibrium equation

and the second variation analyses the stability of the laminated composite. A displacement-based finite

element with five degrees of freedom in each node is used. The effects of lamination angle, modulus

ratio, plate aspect ratio, and boundary constrains upon the critical buckling temperature are investigated.

INTRODUCTION

Fiber-reinforced composites have found wider applications in recent years and this has

resulted in renewed interest in their study under elevated temperatures. Studies have

been conducted of the laminated composites under inplane mechanical loading and to a

certain extent thermal loading has been investigated, but thei-mal buckling remains one

of the challenges facing the aerospace and other industries. Shaikh et al [1] proposed a

higher-order theory of laminated composite plates and shells under thermal and static

loading. Zeggane and Sridharan [2] used the Reissner-Mindlin 'infinite strip' to study

the stability of long laminated composite plates. Chandrashekhara [3] investigated

thermal buckling of laminated plates using a shear flexible finite element. Chen et al

[4] used the eight-noded Serendipity finite element to study thermal buckling under

uniform and nonuniform temperature distribution. Mathew et al [5] analysed an

antisymmetric cross-ply composite laminate using a one-dimensional finite element

having two nodes and six-degrees of freedom.
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PROBLEM STATEMENT

As in metallic structures, changes in temperatures are commonplace in composite

structures during fabrication and structural usage. Changes in temperature results in

expansion when the material is heated, and contracts when cooled, and in most cases

this expansion is proportional to the temperature change. The equation governing the

behaviour of a laminated composite under thermal loading is given byLN) {N JA] [B] 0 " ý}I [N, ]
{M} =~ [B] [D] 0 fc M,] (1

where extensional stiffness Aij, flexural-extensional coupling stiffness Bij, and flexural

stiffness Dj of the plate are defined as

(Aij, Bij, Dij )= N f (Qij)k (, z, z2 dz (ij, = 1,2,6)
k=1 k-I

(Aij)= 03 N fk (Qijk dz (i~j =4,5)

f3 is the shear correction factor [8].

MATHEMATICAL MODEL

Based on the Mindlin plate theory, the deformation field can be written in the following

form

u(x, y, z) = u0(x, y) + z0(x, y) v(x, y, z) = v0(x, y) + zOy(x, y)

w(x, y, z) = w(x, y) (2)

where vo, v0 and w0 are the displacements of the reference surface in the x, y and z

direction, respectively, and Ox, 0y are the rotations of the transverse normal about the x-

and y-axes. The intermediate class of deformation is defined by the limitations that the

strains be small compared with unity, the rotations relative to the x and y directions

moderately small, and that the ex, Sy, YXY ,Yyzand 7xz components of the strain-

displacement relations for a three-dimensional medium, including thermal strains are

{(}--(Ex 6y •y Y x •y K xy)T-(ax ay aYy)TAT

{tY)(Yyz •x:)T (W,yOy W+ x 'Ox)T (3)

where
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( Fx 7y xy (U'. V'y Uy + V'x)Tr+½I((p q2yT 2(p2T y)

(Kx X : KY xy)(0:. x 0 yly 0.y +OyIx) (4)

exey,y'xyjzand yx, are extensional and shearing strains at any point through the

plate thickness and ex, s and 7xy denote the corresponding quantities at points on the

plate middle plane only. We note that

(P. = W,x Ty = W'y

where "'X" and "'," represent partial differentiation with respect to x and y. The stress-

strain relation of the k-th layer of a laminated composite plate is given by

(CrX Q__1 Q12 J16 6x 0 O, ] I Qtl2 QtY32 I (1x{

Q12  Q22  Q26 _+ yy Qt2 Qt22 Qt23 xy AT

Xty _Q16 Q26 Q66  Yxy Ly+0yIx LQtl3 Qt23 Qt33 J2C xyu

(44 (-- (74 2 
(5)xz(

I ( •Q45 Q55A , yz) 5

where a1 , are thermal expansion coefficients in the principal material directions. AT is

the temperature rise. In the derivation of the above equations, the stresses and strains

were transformed from the principal material directions of the orthotropic lamina to the

x,y co-ordinate system according to

Tij = aik aj1 Tki (6)

From the general plate theory we know that

{N} =(N.,N ,N,)= -

{M * m = ( M,,M),(CF.= I ( , T,, y)dz

{Q}T =(QxQy)= j(txz-tyCZ'z (7)

where N, M, and Q are the inplane, bending and shear stress resultants over the

thickness of the plate. The use of Mindlin plate theory together with the intermediate

class of deformation and the general plate theory results in the stress-strain relation of

the form of equation (1). The stress state developed in the plate very much depends on

the lay-up and boundary conditions, and it is this stress state that is responsible for plate

buckling rather than the applied one. The loss of stability is analysed by setting u Uo +
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Ul, V = v0+vlW = W0+ Wi,0x =0x0+0x, and0y = 0 y0 + 0 y1, where the subscript "1"

denotes the incremental displacement on the primary path of equation (1)

FINITE ELEMENT MODEL

For a conservative structural system, the total potential energy 1I of a loaded structure is

defined as the sum of the strain energy of the structure itself and the potential energy of

the applied load.

UI = rIm + 'ib + -is (8)

where m, b, and s are the membrane, bending and shear strain energies, respectively.

The problem is solved by dividing the region 0 of the plate into n-noded quadrilateral

finite elements, each with five degrees of freedom per node, such that
n

ri(a) = EIY(a) (9)
i=l

where 17 and 'I(e) are potential energies of the plate and element, respectively, a is the

displacement vector {upvl,w 1 ,0X, 0 y1 The variation in each element can be

interpolated, for node i (i = 1,2, ... n), as

n n n " n n
u,=XNiu' v, =ENivi w 1, =ENiw 0, =0 Ni0i, oy, =ENj0i,

i= i il i=1

(10)

where Ni are the interpolation functions. Using the same shape function associated with

node i, we can write

4

U1 = ENiai (11)
i=1

where Ni are the interpolation functions and are used to interpolate both the nodal in-

plane displacements u, v, the lateral displacement w as well as the normal rotation O, Oy.

The shape functions are expressed in terms of the natural (local) element co-ordinate

system (4, ri). ul is the element displacement vector and a' is the vector of variables for

node i in the element e. The normal and shear strain matrices and the curvature matrix

are given by

n n n

sit = EBtiai 8 lb =Enbia' c ls =EBiai (12)
i=1 W=l M=l
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where Bti' Bbi, and B i are, respectively, the normal-, shear- and curvature-

displacement matrix associated with element e. The bending stresses and the shear

stresses are defined as

4 4

E(ABti +BdBbi)a' T = BABsiaii (13)
i=l i=l

where A, B d and A are material property matrices of the laminated composite as

defined in equation (1). Using the constitutive equations, we have

N1  [A][BiI +[Bd][Bbl]]{a' {M}= [[Bd][B] +[DI[Bbi]]{a'}

{Q1} = [A][Bsi ]{af } (14)

Substituting into the second variation of equation (9), and for arbitrary 8u1 8v 1 8w 1

801 80, we have

EK I ]fai 1+EK29]ai, J+ [K 3 jai, J-I-K4 ]fail} 14EK5 ]al }+ K, R ai, J--'0

and ([K]+ [Kg. {ai}=0 (15)

where [K] is the structural stiffness matrix and [K8 ] is the geometric stiffness matrix.

Due to space limitations the full form of [K] and [Kg] cannot be given in this paper.

Classical eigenvalue buckling analysis is often used to estimate the critical (buckling)

load of "stiff' structures such as the laminated composite. "Stiff' structures are those

that carry design loads primarily by axial or membrane action, rather than by bending

action. Their response usually involves very little deformation prior to buckling. In the

finite element context, the classical eigenvalue-buckling problem may be stated as

follows. Given a structure with an elastic stiffness matrix, K•, a loading pattern

defined by the vector {N,}, and an initial stress and loading stiffness matrix, K•, find

load multipliers (eigenvalues), ki, and buckling mode shapes (eigenvectors), a!, which

satisfy equation (15). The critical buckling loads are then given by XiNj. In this study

only the smallest load multiplier and its associated mode shape are of interest. The

eigenvector ai associated with X'cr defines the buckling mode.
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CONCLUSION

The performance of laminated composites under adverse temperature variation dictates

that careful analysis be made to determine the optimum configuration of the composite

structures. The combination of numerical/mechanical aspects is essential for the

accurate prediction of the non-linear structural behaviour of composites (where instead

of secant stiffness matrix, we use tangent stiffness matrix) in the prebuckling, buckling

and postbuckling regime. The effects of lamination angle, aspect ratio, and material

parameter, etc have a significant influence on the critical buckling temperature of

laminated plates.
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LINEAR ANALYSIS OF LAMINATED COMPOSITE PLATES
USING SINGLE LAYER HIGHER ORDER DISCRETE MODELS
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Bulevar revolucije 73, 11000 Belgrade, Yugoslavia

INTRODUCTION

The transverse shear effects are strongly pronounced in filamentary composite plates
owing to the low transverse shear modulus relative to the in-plane Young's moduli. The
classical plate theory underpredicts deflections and overpredicts natural frequencies and
buckling loads due to the neglection of transverse shear strains. Although, the first order
shear deformation theory could overcome this problem, recently many higher order shear
deformation theories have been proposed for the enhancement of solutions in orthotropic
and anisotropic laminates. In an attempt to obtain the nonstraight deformation of normals
to the plate midplane and to model the warping of cross sections, which is quite strong
for thick laminates, Reddy [1] presented a simple higher order theory for laminated
composite plates. This theory accounts for the cubic variation of the in-plane
displacements through the plate thickness and for the quadratic variation of transverse
shear strains which vanish on the top and bottom faces of the plate. The objective of this
paper is to present the development of a simple CO isoparametric single layered finite
element model based on higher order theory and its application to dynamic analysis and
free vibrations of symmetric cross-ply and angle-ply laminated composite and sandwich
plates.

KINEMATICS

Consider a plate of sides a and b and of total thickness h laminated of a finite number of
orthotropic layers of thickness hi with the material axes of each layer being arbitrarily
oriented with the respect to the midplane of the plate. A Cartesian coordinate system is
chosen in such a way that the x-y plane coincides with the midplane of the plate. The
displacement field in the plate is assumed to be of the form:

u(x,y,z,t) = zvx (x,y,t) + Zx (x,y,t)

v(x, y, z, t) = zv y (x, y, t) + Z3 y (x, y, t) (1)

w(x,y,z,t) = w* (x,y,t)

where t is the time, u, v, w are the displacements in the x, y, z directions respectively, w*
denotes the transverse displacements of the midplane, iV. and Vy are the middle-

surface slopes in the xz and yz planes respectively. The parameters Cx and Cy are the
higher order terms in the Taylor's series expansion defining the warping of cross sections
which is important in case of thick laminates. The strains associated with displacements
in equation (1) are:
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Nf Ix,x 1 [ x,,
C z N l z 3 Yly

C = j = xy + V'y,x + + xJ (2)

w 'y + V X R 2 Y
where subscripts b and s stand for bending and shear respectively.

CONSTITUTIVE EQUATIONS

The constitutive equations for the k layer of the laminate can be written as:

"61 "C1 1  C 12  0 0 0  (k) E"8

0Y2 C12 C22  0 0 0 C2

a- 6 0 0 C 66  0 0 C6 =CC (3)

(04 0 0 0 C44 0 C4

L5 0 0 0 0 C55 J C5

where Cij are the reduced stiffness components in the material axes of the layer, as
follows:

El 1  E2 v 12 E 2  v 2 1E 1C11 C22 =- C12 = -=
1 - v12v21 1 -- VI2V21 1 -- VI2V21 V1--V2V21 (4)

C66 = G12 C44 = G13 C 55 = G23

The relationships used to transform stress and strain vectors from one coordinate system
to another are:

Y = Ta e = Te (5)

where a and e are the stress and strain components in the x-y coordinate system and T is
the transformation matrix of the form:

cos 2 o sin 2 0 2sin0cos0 0 0 (k)

sin 2 0 cos2 0 -2sin0 cos0 0 0

T= -sin0cosO sin0cosO cos 2 0- sin2 0 0 0 (6)

0 0 0 cos 0 -sin 0

0 0 0 sin0 cos0

where 0 is the layer angle. The reduced stiffness matrix, Q, from the material coordinates
to the global plate coordinates, can be calculated as:

Q = T-'CT (7)

Therefore, the constitutive relations for kth layer in the x-y system are of the form:
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"Qii Q12 Q13 0 0 (k)
xy Q12 Q-22 Q 23 [ 0 0 xy Qbb

Cy Q13 Q23 Q33 0 0

='. rQxy = . . . . . . xy = - (8)

XZ 0 0 0 Q44 Q4' J
"CYZ ' 0 0 0 Q45 Q55 ,yz

FINITE ELEMENT MODEL

In Co finite element theory, the continuum displacement vector within the single layered
finite element is discretized such that:

n
U= XNi ui (9)

i=I

in which n is the number of nodes in an element, Ni is the isoparametric shape function
associated with node i in terms of the normalised coordinates 4 and rl, ui is the
generalised displacement vector corresponding to the i" node of an element. Vectors u
and ui may be written as:

w(x, y,t) wi
Vx(x,y,t) U xi

vy(X,y,t) { } Vyiu ==u '_ --- U (10)

ýx(XY't) UW xi U UWiJ

Cy(X,y,t) C uyi i

where subscripts m and co imply Mindlin plate theory terms and additional terms due to
the warping of cross sections, respectively. Relationships between curvature and
displacement vectors are of the form:

[ lVx,x ] n wx + V n
kbm = VyIy = BbmiUmi ksm = I= --nYBjum1x, y+ yxJ i=l -wBy + Ni u

'y + Vyx(11)

[ x'x n1x
kbD=1 ýY'Y - Bb=iu , kso) yxi=l

[xy + 

Cx 
ii1

where:
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[= Nix 0 1Nix Ni 01
Bbi= 0 N*i,y si= Ni,y 0 Ni

L Ni'y Ni'x(12)

Bbo~i = Ni,y Bsoi =[1 Ni-Ni,y Ni,x

Upon evaluating the matrices Q and B as given by equations (8) and (12), respectively,
the element stiffness matrix can be readily computed using the standard procedure of
minimisation of the total potentional energy with respect to the nodal variables:T • T T T

BDB + BT-D IB BT . B. + BTD B1K bmi bmj snu smsmj bmibmoBbcj snu smWO SOj 1 dAeK i - J TT T T " " e ( 1 3 )

A,. Bbo~iDbfomBbmj +BsiDs0mBsmj BbcoiDb o•Bbcj+BsoiDsoo)Bso~jJ

where:
r+h/2 2,. - +h/2 f+h/2 4--

Dbmm = -h/2 Z QbdZ Dsmm = fh/'2Qdz Dbm. = Dbo)m = fh'2Z Qbdz
h/2 2 g+h/2 6.- +h/24 ,d

Dsmi a m D M= 3r/2 z Qsdz Dbw = Jfhi6Z Q•dZ Dsoc = 9fIh/2 Qdz

The moment and force stress-resultants per unit length are introduced in the present
shear deformation theory in the following way:

b+h/2 3+h/2(Mx, MYI MXY) = h/2 (aix, ý (Y, " xy)zdz (Px, Py, Pxy) = E~h/2 (14)fy "x~zd

(Tx, Ty) = rh/2( (Rx'i,) = h/2 (xz'yz)z 2dz

In finite element formulation [2] we adopted a hierarchical concept to represent all
degrees of freedom (Serendipity shape functions plus a bubble function). Therefore, we
easily obtained enhanced 8-node Serendipity element, 9-node Lagrangian element and
Heterosis element following the same formulation. Using selective integration all major
properties of the previous finite elements (number of zero energy modes, ability to pass
patch and locking tests and to overcome the formation of mesh mechanisms and overall
accuracy) have been preserved in the new developed elements. New plate elements have
been implemented in a computer code for dynamic and eigenvalue analyses of laminated
plates.

NUMERICAL RESULTS AND DISCUSSION

To emphasise the capability of the proposed finite element model some numerical results
will be presented herein. First we have three-ply orthotropic laminates with identical top
and bottom plies, h1 ! h=O.1 and h2/h=O.8; the relative values of the moduli are the same
in all the plies:

E2/E1 = 0.5252 G12/E1 = 0.2928
v12 -0.44 G23/Ei = 0.2972
v21=0.23 G13/Ei = 0.1781
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Orthotropic properties assumed in the following numerical example correspond to
Aragonite crystals. We considered dynamic response of a simply-supported plate,

b/a= FI2, h/a=0.1, with modular ratio between outer and middle plies, P=E (1)/EI(2) =15

and mass density ratio Pl/P2=5 , subjected to a step pulse acting as uniformly distributed
load p over the top surface. The values of central deflection w and bending moment M.
in dimensionless form for different plate theories respectively are given in Table 1.

Table 1.
Classical Mindlin's Presenttheory theory model To=T (EB2)1P2) /a

__Wo Mo W WO .O WO Mxo wo=wEl(2)h/p
1. 1.640 205.5 1.801 194.4 2.174 192.2 Mo12Mx/pa2h2

2. 3.764 377.8 4.171 391.7 4.685 333.8

3. 5.828 613.4 6.331 551.3 6.978 492.7
4. 4.763 501.4 6.406 568.0 8.258 574.8
5. 2.709 324.2 3.957 382.5 6.335 463.1
6. 0.352 88.4 1.768 207.3 3.107 224.0
7. 0.859 163.0 0.086 16.0 1.325 119.9
8. 2.735 314.0 1.853 1195.3 0.647 75.4

9

8 * Classical theory
76 U Mindlin's theory
65 Present model
4
3
2

0

0 1 2 3 4 5 6 7 8
To

Figure 1. Centre deflection versus time

From Figure 1 it is obvious that both plate theories, classical and Mindlin underestimate
deflection w compared to higher order theory.

The eigenvalue problems for free vibrations and buckling of laminated plates are of the
standard form:

(K- M02M)u = 0 (K-XK,)u = 0 (15)

where K, M and K0 are the global stiffness, mass and geometric stiffness matrices
respectively and u is the generalised displacements vector. The parameters (0 and X are
the circular natural frequency and the in-plane load factor, respectively. To obtain the
eigenvalues and associated eigenvectors subspace iteration method has been used. For
element mass matrix we performed the special mass lumping scheme in which mass is
lumped in the proportion of the diagonal entries of the consistent mass matrix while the
total mass of the element has been preserved.

In the following problems, simply supported square plate made up of layers of equal
thickness, symmetric cross-ply (00/900/00...) laminae, are considered. Each layer is a
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unidirectional fibre reinforced composite possessing the following engineering elastic
constants:

E1 /E2=3,10,20,30 G12 /E2=0.6 G23 /E23=0.5
v 12=0.25 p=1.0 G 13=G 23

The effect of orthotropy of individual layers on the fundamental frequency of simply
supported square multilayered composite plate with h/a=0.2 is presented in Table 2. The
results presented in Table 2 compare well with 3-D elasticity solutions [3] and other
solutions available in the open literature [4].

Table 2.
Nondimensional fundamental frequencies tu = (a=2 / hP / E2 )1/2

Source N. of E1 /E2
layers 3 10 20 30

Noor 0.26474 0.32841 0.38241 0.41089
Owen and Li 0.26948 0.33917 0.38979 0.41941
Present 0.26733 0.33175 0.37491 0.40149
Class. P1. Theory 0.29198 0.41264 0.54043 0.64336
Noor 0.26587 0.34089 0.39792 0.43140
Owen and Li 0.26988 0.34534 0.40297 0.43704
Present 5 0.26841 0.34419 0.39390 0.42685
Class. P1. Theory 0.29198 0.41264 0.54043 0.64336

CONCLUSIONS

Numerical results obtained using this refined finite element analysis and their comparison
with exact three dimensional analysis pointed out that the higher order theory and the
present single layered model provide results which are accurate and acceptable for all
ranges of thickness and modular ratio. This approach provides more accurate results than
conventional thin or thick plate theory and has advantages over a full three-dimensional
continuum analysis in terms of simplicity and economy.
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ABSTRACT - Converse piezoelectric effect is used to suppress the
vibrations of a thermally loaded orthotropic plate stiffened with
piezoelectric actuators. The control problem involves the minimization of
the dynamic response of the plate by using the voltage applied to the
piezoelectric stiffeners as a control variable. The piezoelectric
stiffeners are bonded on the opposite surfaces of the plate and placed
symmetrically with respect to the middle plane. The control moments are
activated by applying out-of phase voltages. The active control takes the
form of a piecewise constant alternating voltage with varying switch-over
intervals to achieve optimum effect. The specific thermal loading is taken
as step temperature rise on one surface with the other surface insulated.

INTRODUCTION

One of the new directions in the active control of structures involves the

application of piezoelectric actuators using the converse piezoelectric effect to

induce control forces and moments. These actuators can be implemented in the

form of additional layers, patches or stiffeners (see [1] for references). Excessive
vibrations may arise as a result of external factors and need to be damped out

actively for improved service performance.

The present study is concerned with the active control of an orthotropic plate

subjected to thermally induced vibrations using piezoelectric actuator-1stiffeners.

Structural vibrations due to thermal effects such as rapid heating may arise in

aerospace and nuclear reactor applications and has been analysed in [2]. Control of

a thermoelastic beam using mechanical actuators has been studied in [3].

The present study takes advantage of the fact that the electric field can be

employed as a time-dependent, control variable in suppressing the excessive

vibrations. Structural control of an orthotropic plate is achieved by employing the

piezoelectric material as actuator-stiffeners. The objective of the control is

expressed as a quadratic cost functional involving the deflection and the velocity.

The equations are derived for the case of a plate subject to out-of-phase voltage.

Vibration control is achieved by applying positive and negative voltages

alternatively and determining optimal switch-over times.
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BASIC EQUATIONS
We consider a specially orthotropic plate of length a and width b which is
reinforced with equally spaced strip-stiffeners as shown in Figure 1. The
piezoelectric stiffeners are placed parallel to the geometric coordinates x and y, and

are of identical size. The governing equations for the above structure are derived
on the basis of the simplifying assumptions discussed in Ref. 1.

a X

stif• #a te

Cross-section

Figure 1. Geometry of the stiffened plate

The equations of motion for the reinforced plate are given by

114T + 1•,Y" 0, 16, + S2,Y = 0 (1)

I1,zx+ 2N6,xy+ IQ,y+ = P w,"t (2)

In eqns. (1) and (2), Ni and ffi are stress resultants and stress couples,

respectively, w(x,y?, t) is the transverse deflection, p is the mass per unit area, and t
is time. In the present study, only piezoelectrically induced components of stress
resultants are retained. Stress couples and stress resultants can be expressed as a

sum of the contributions of the plate and the stiffeners. The plate contributions are
given 'by

N1 = Al1  + 12A , K = "12 U 2u + 2v ,y (3)

N6 = 66 (',Y + V, ), X1 = -(B11 w, + D12 WYY) - (4)

Nu2= -('12 "X+ B22 U, YY) -, , N6=- 66 ",•Y (5)

where A ij and Bij are extensional and bending stiffnesses of the plate, and u and v

are in-plane displacements in the x and y directions. Thermal moments are given
by

h/2

4#12
where Ai are stress-temperature coefficients.
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The constitutive relation for a slender piezoelectric stiffener, polarized in the z

direction and oriented in the x direction is given by

P = B P ( - Z IV, - ds Ve / hs - ap .) (7)

where Bp, d31 and h8 denote the modulus of elasticity, the piezoelectric constant

and the thickness of the stiffeners, respectively. Vc(x,y,t) is the applied voltage

and serves as the a control variable and ap is thermal expansion coefficient of the

piezoelectric stiffeners.

The stress resultant and the stress couple induced by the stiffener-actuators

oriented in the x direction are obtained from

(YI if, (1 ) /) f ocaXP (1, z) dz (8)
Z

where b is the width of a stiffener and I is the spacing between the stiffeners.

In the present study an electric field of opposite orientation is considered which
corresponds to the out-of-phase voltage. In this case, the signs of the piezoelectric

strains are opposite leading to a piezoelectric stress couple but no stress resultant.

Consequently the control is exercised by bending moments.

PIEZOELECTRIC STRESS RESULTANTS AND COUPLES

The voltage V,= Vc(x,y,t) has the opposite sign in the stiffeners which are

symmetrical about tthe middle plane. The integration of eqn. (8) yields

N =2 B (bs hS/l) Ua, (9)

N~s= 2(B /1) (1 w, + d V F1 lh + p(T -- 7) (F12)) (10)

where it is assumed that the temperatures of the stiffeners are equal to the

corresponding surface temperatures of the plate, viz.

Ts(x, y, t)=T(x, y, -h12, t), T2(x, y, t)--1(x, y, h12, t) (11)

and

F = (bs/ 2) [(h/2 + h1)2 - (h/2)2], I=(b.1S) [hl2+h -)3 -(hl2) ] (12)

are the first and second moments of a stiffener about the middle plane. For the

stiffeners along the y direction the corresponding expressions are

IY2 = 2 EP (bg h.31) v y (13)

H#2= -2(B 1) (1 w, +-- d31 c F s-- p (T2.- 1)3(F82)) (14)
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EQUATIONS OF MOTION

The summation of forces and moments contributed by the plate and the stiffeners
give the total stress resultants and couples, viz.

1(i N + i ' Mi =i + i ' i=1, 2,6 (15)

Substitution of eqns. (15) into the linearized equations of motion (1) and (2) yields

the uncoupled equations of motion:
W1 ,XXX + 2 (P1 2 + 2 D6 6) , XYY + -22 uyyyy + 1l,xx+ 4±1

1,x 2,yy
(16)

+ 2 B (h F / 1 hS) (V V + V, 1 ) + P w, )t = 0

where

= T +.( a t) F(T2 - 1 ) (17)

h/2
iA T' z dz + (B a /1l) F(Y2 - 1) (18)

-h12
In eqn. (17) BL i = Dii + 2 B I / I are modified bending stiffnesses of a

reinforced plate,

V= d3 i VC / h (19)

is the nondimensional control voltage, and

"P = Pp h +Ppz b hs (20)

is the "smeared" mass per unit area of the structure with pp I denoting the mass

density of the plate and Ppz that of the stiffeners. The boundary conditions are

also uncoupled and are given by

w=0, 7 11W, +Ba+ T +2E (hF/ a) =0 forx=O,a (21)

w=0, D12 W,•+ 722 w, YY+ N + 2 B P(hF / lh) V= 0 for y = 0, b (22)

The initial conditions of the problem are specified as

W(X, y0 0) = D(x, y) w t(X Y, 0) = IF(X, y) (23)

ACTIVE CONTROL PROBLEM

The control problem is concerned With minimizing the dynamic response of the
plate subject to a bound on the maximum value of the voltage that can be applied

to the piezoelectric stiffeners which creates a control force on the plate. The

control force is in the form of a stress couple.
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The minimization is achieved by applying the voltage V,(X,Y,?t) in such a manner

that the dynamic response of the plate is reduced with time. It was found that a
uniform voltage reduces the dynamic response for a certain time duration, but
starts to increase it again unless the direction of voltage is reversed at the end of
this duration. Thus the application of positive or negative voltage achieves a
reduction in the dynamic response in a time interval, and thereafter the sign of the
voltage needs to be reversed to continue with the control process. In practice this
means that the voltage changes sign at the end of each time interval while the
switch-over time for that interval is determined so as to achieve the fastest
decrease in the dynamic response.

Let the switch-over times be denoted as tpi = 1, 2, ... and the uniform voltage

in the interval t • t+ as V(t i). It is noted that in a given interval of time

the voltage is constant and its sign could be positive or negative. Furthermore, this
sign changes alternatively in each consecutive interval. Let the voltage applied in
the initial interval 0• <i be V0 the sign of which is to be determined so as to

reduce the dynamic response at t = t 1 Then V( t i) = (-1)~ V 0 for i = 1, 2,

The objective function describing the dynamic response of the plate is chosen as

Jr(t;0 f af 'adx dy±+A 2Jfo fo wtdx dy (24)

where A, A2 > 0 are weighting factors. The applied voltage satisfies the constraint

I V(t d)I • Vma (25)
where Vma is the maximum. voltage that can be applied to the plate.

Thus the active control problem studied in this work can be stated as follows:
Determine the voltage V(t i ) and the switch--over times t for each i such that

the objective function given by eqn. (24) is reduced as time goes subject to the
constraint (25) on the voltage.

METHOD OF SOLUTION FOR RAPID TEMPERATURE RISE
Consider the thermal loading case of suddenly applied uniform temperature Tom)

acting on the plate surface and zero temperature on the insulated surface
z = -h12, ie, T(x, y, -h12, t) = 0. Then (see Ref. 2)

W 2
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where j = m -1/2, 0 = r 2/h2 and x is the thermal diffusivity [2]. A solution of the

problem is sought in the form

{w, V, i, 7" (,yt) = B r Vn, , amn(t)} sin(m/rxa) sin(niry/b) (27)
m n

1P
which satisfies the boundary conditions identically. The expressions for 1;' and Nj

in eqns (17) and (18) are given in [2]. We define the nondimensional quantities

Zmn= %n/a, '" = WS1 t, On= 0mn/ 011 (28)

with nma denoting the vibration frequency. The frequencies tmn are given by

nmn={(1/p-) [F1 1 (m~rla)4+2(B 1 2 +2BD,) (mr/a)2 (n~r/b)2+-f 22 (n7r/b) 4 ]}1/ 2  (29)

(i)
The differential equation satisfied by Zmn(r) is given by

+ 2 (i) 2i[(u~r2 "ii2
Zmn ±Win Zmn = 11~, '~P)1 6Gmn+[(lb /( 1a) fffmn+llmn 'mn (0

in the interval for rTi r < rIi+1 where ( )= 0( )10r and

1hin = (h / 2 a)(1 + hs/h) rn (31)

'mn = 2 h bs [(m7r/) 2 + (n7r/b)2] / 1 j) (32)

The solution of eqn. (30) can be obtained using standard techniques.

CONCLUSIONS

The problem of actively controlling the thermally induced vibrations of a plate

reinforced with piezoceramic stiffener-actuators has been formulated. The control

is applied by adopting a time-dependent out-of-phase voltage for optimum

vibration damping with the voltage assuming alternatively positive and negative

bounds. The switch-over times are determined at every step optimally.
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ABSTRACT

The converse piezo effect is used to minimize the deflection at a given point for
antisymmetrically laminated thick rectangular plates. The piezoelectric layers are
bonded to the top and bottom surfaces of the laminate and are subjected to an
electrical field. The deformation generated by the piezo effect counteracts the de-
flections induced by mechanical and/or thermal loads. In the numerical examples,
the mid-point of the plate is specified as the point deflection of which is to be min-
imized.

INTRODUCTION

Adaptive materials technology provides a highly effective tool for the static and
dynamic control of structural systems. In particular piezoelectric materials may
be used as sensors and/or actuators by employing direct or converse piezoelectric
effects.

It is quite common for structural systems to work under mechanical and thermal
loads leading to the coupling of these fields with the electrical field when piezoelec-
tric materials are part of the structure. Piezothermoelastic response of composite
structures has been studied in order to incorporate the advanced materials tech-
nology with smart materials technology in the presence of thermal effects [1]. The
particular application of piezothermal materials as sensors have been proposed by
Ashida and Tauchert [2].

In the present study, the objective is to investigate the use of piezoelectric materi-
als in the static control of laminated structures. Both the electric field and the ply
angles can be employed as design variables in reducing the deflection of a laminate.
The particular problem solved in this study involves the minimization of the de-
flection of a given point of an antisymmetric thick laminate using the voltage and
ply angles as design variables. It is shown that the converse piezo effect and the
material directions can be used effectively to counter the deformation induced by
mechanical and/or thermal loads.

BASIC EQUATIONS

Consider a multilayered rectangular laminate of length a, width b and thickness
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h in the x, y and z directions. The laminate is composed of N number of gener-
ally orthotropic layers and layers of a piezoelastic material. The laminate may be
subjected to mechanical, thermal and electrical loads leading to static deformation.

A general higher-order theory is employed to compute the displacement components
u, v and w in the x, y and z directions, respectively. In particular choosing a third-
order theory in the thickness direction, these components can be expressed as

(u, v, W) = (U 0,7 v0 1 W) + Z (0. 0'0) + 2 (4,' 4,( &) + _ ( ,, •) (1)

where the superscript "o" denotes mid-plane displacements and the variables ¢, {
and W are functions of x and y coordinates only. Imposing the condition of zero
transverse shear at z = ±h/2, ý,, pt, V. and Wo can be expressed in terms of other
variables.

The stress-strain equations for structural and piezoelectric layers (k = 1, 2,... , N)
are given by

47X Q11 Q12 Q13  0 0 Q16]
Q22 Q'L 0 0 Q_6

Q33  0 0 Q3
rQ 44 Qs 5  0

TXZQ 55  06
Lr. "Y J Q66

ee32 A,2

x C a [E] A••A3  t (2)
%0 k 0

%tx0 0

Jk L '36 J 6 J

where Qij are the transformed elastic coefficients, -'jj are the transformed piezoelec-
tric coefficients, Xi are transformed stress-temperature coefficients, E, is the applied
electric field and t is a temperature rise from a stress-free equilibrium. Note that
eij are zero for the structural material.

Using the principle of virtual displacements the governing equations and the bound-
ary conditions of the problem can be obtained. The principal of virtual displace-
ments can be expressed as

I2h/2 A (o& + UV6ev + o'6e. + TXiSj'YX + TYZ8,yz + r,,&y.,)dAdz = J q'w'dA_h/2 J A a" 6 A(3)

where q is the transverse load acting on the plate.

The equations of equilibrium can be derived using eq. (3) by substituting the
stresses and strains expresed in terms of stress resultants and deformation vari-
ables. These results are given in [3], and are not included here for brevity.
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THE DESIGN PROBLEM

The design problem investigated in the present study refers to the problem of min-
imizing the transverse deflection Iw(x, y, z)I at a given point (xo, Yo, zo) using the
ply angles and the electric field as design variables. The loading on the plate could
be mechanical, thermal or a combination of both. Thus, the deflection w is a func-
tion of the transverse load q, temperature variation t as well as the design variables
0 k and E_, viz.

w = w(x, y, z, q, t; 0k, E.) (4)

where, in general, q = q(x,y) and t = t(x,y,z). Let So denote the given set of
values of location and loading, i.e.,

So = {xo, yoZ, q,t) (5)

and wo = wo(So; 0k, E,) denotes the deflection evaluated at 6o. The optimal design
problem can be stated as

Determine the optimal values of Ok and E, for a laminate subject to the mechanical
and thermal loads q and t such that the transverse deflection at (X0 , yo, zo) is
minimized, viz,

min Iwo(So; Ok, E_)I (6)
Ok ,Ez

Note that the minimum value could be zero, however, in general Iwol > 0.

ANTISYMMETRIC PIEZOELASTIC LAMINATE

The specific laminate to be studied in the present work is chosen as an antisymmetric
one with fiber orientations ±0 with respect to the x-axis so that Ok = (-l)k+1O,
k = 1, 2,... , N where N is an even number. The piezoelastic layers are required to
have principal material directions coinciding with the geometric coordinates. This
configuration leads to a number of simplifications and some of the stiffnesses become
zero (see Ref. [3]).

For a simply supported laminate, Navier-type solutions could be expressed in terms
of trigonometric series for the variables u'•,v 0 ) IO , O k, & 7 and Pz. The
stress resultants due to electric field and thermal loading can be expressed using
Fourier series. Finally employing the equations of equilibrium, a linear system of
equations is obtained to compute the unknown Fourier coefficients. The details of
these calculations are given in [3] and are not shown here.

NUMERICAL RESULTS

The results are given for a laminate with graphite/epoxy structural layers PZT-5A
piezoelectric layers. The material properties of the graphite/epoxy (T300/5208)
material are taken as

E, = 181GPa, E 2 = E3 = 1O.3GPa, G12 = G 13 = -7.17GPa, G23 = 2.87GPa

V/2 = v13 = 0.28, V2 3 = 0.33, a1 = 0.02.10-/c, a2 = a, = 22.5
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The properties of the PZT-5A material are

El = E2 = 61GPa, E 3 = 53.2GPa, G12 = 22.6GPa

G13 = G23 = 21.1GPa, V1 2 = 0.35, V13 = V2 3 = 0.38

a, = a 2 = 1.5- 10-6/C, a 3 = 2.0 10-6 /C,

d31 = d32 = -171 . 10- 12m/v, d33 = 374. lO-1 2m/v

where ai and d~i denote the thermal expansion and piezoelectric compliance coeffi-

cients, respectively. The results are obtained for a twelve-layer laminate of config-
uration (p/p/(O/ - O)4/p/p) where p denotes the piezoelastic layers.

The mechanical loading is specified as a uniformly distributed load of q and the
thermal load as t(z) = 2zT/h, where T indicates the temperature.

0/.00t7

0.000a a/b=l.0

"a/b= 1.5

0.0006

0.0004

0.0002 ......................

0 16 ao 45 60 '6 o0

Figure 1. Mid-point deflection versus ply angle (q = lOOPa, T = E= 0).

In the present study, the location of the displacement to be minimized is chosen as
the mid-point of the plate, i.e., xo = 0.5a, yo = 0.5b and z0 = 0. The thickness ratio
in all the calculations is taken as h/b = 0.1. Figures 1 and 2 show the curves of
wo/b versus 0 for various aspect ratios under mechanical (q = 10OPa) and thermal
(T = 40'C) loading only, i.e. E, = 0. The curves indicate the optimum values of
0 for minimum deflection at different aspect ratios. Thus, for!a/b = 1.0 0opt = 45'.
For a/b > 1, Oopt > 450 and for a/b < 1, #opt > 450.

0.40

-0,45
- 0 4 .. . . - . . . .. . . . . . ..o. . ... .. .." ° ...... .....

.... . ... ............

/" •....... a,/b=1..O

0 16 30 45 60 75 90

Figure 2. Mid-point deflection versus ply angle (T = 400C,'a = E= 0).
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Figure 3 shows the curves of wo/b versus 0 for various aspect ratios with the electric
field specified as E, = -/ + 30. 10v/m, and q = t = 0, i.e., deflections due to
piezoelectric effect only. It is observed that the deflection depends on the fiber
angle, aspect ratio and the magnitude of the electric field. Clearly, the piezo effect
can be used to suppress the deflections due to mechanical and thermal loading by
adjusting the direction and magnitude of the electrical field.

0.4

03- &a/b=0.75

O'S ----- a/b=1.5

'x.~ ~ .......... =.1.

0. . .. . ...............

0.1

0 i6 30 46 60 76 90

Figure 3. Mid-point deflection versus ply angle (E, = 30 . 106 v/m, q = T = 0).

Figure 4 shows the graph of wo/b plotted against E, and 0 for a plate with a/b = 2.0,
q = 10OPa and t = 0. It is clear that wo = 0 at certain values of E, and 0:

CT

Figure 4. Mid-point deflection versus E, and ply angle
(q = lOOPa, T = 0,a/b = 2).

The corresponding results for a laminate under thermal loading are given in Fig.
5. Figure 5 shows the graph of wo/b versus E, and 0 for a plate with a/b = 2.0,
T = 100C and q = 0.
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Figure 5. Mid-point deflection versus E, and ply angle
(T= 100C,q=O,a/b= 2).

CONCLUSIONS

The piezoelectric effect has been used to minimize the deflection at a given point of
an antisymmetric laminate under mechanical and/or thermal loads. It was shown
that it is possible to compute the right combination of the electrical field and the
fiber orientation to reduce the deflection of a point. In the calculations the mid-
point deflection of the laminate was chosen to be minimized and the results were
obtained to suppress this deflection by applying a certain electrical field at a given
fiber orientation.

The use of converse piezo effect for deformation control appears to be an effective
way of suppressing excessive deflection of laminates under given mechanical or ther-
mal loads. As the electric field could be adjusted for any loading conditions, the
resulting structure is adaptive with respect to deformations and its in-service per-
formance will be superior to that of a non-adaptive structure.
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Abstract In this paper, a model to demonstrate the dynamic analysis of composite beams with bonded or
embedded piezoelectric sensors and actuators is presented. A theory of laminated composite beams with
piezoelectric laminae is developed. The higher order shear deformation theory of Reddy is used in
formulating the model. The method of exact solutions for the frequencies of free vibration for simply
supported composite beams with piezoelectric layers is also presented.

INTRODUCTION

The intelligent/smart structures featuring a network of integrated sensors and actuators within a host
material will have a tremendous effect upon numerous industrial fields. The idea of applying
"smart" materials to mechanical and structural systems has been studied by researchers in various
disciplines. Among the promising materials with adaptable properties such as piezoelectric
polymers and ceramics, shape memory alloys, electrorheological fluids and optical fibers,
piezoelectric materials can be used both as sensors and actuators because of their high direct and
converse piezoelectric effects. Especially piezoelectric materials, which exhibit mechanical
deformation when an electric field is applied and conversely, generate a change in response to
mechanical deformation, is very good smart materials. By employing piezoelectric materials, it is
feasible to achieve accurate response monitoring and effective control of flexible structures. This
advantage is especially apparent for structures that are deployed in aerospace and civil engineering.

In order to utilise the strain-sensing and actuating properties of piezoelectric materials, the
interaction between the structure and SSA (strain sensing and actuating) material must be well
understood. Mechanical model for studying the interaction of piezoelectric patches surface-mounted
to beams have been developed by Crawley and de Luis (1987), Im and Atluri (1989), and Chandra
and Chopra (1993). The present paper is different from these in that we study laminated beams
containing piezoelectric laminae. The modeling aspects of laminated plates incorporating the
piezoelectric property of materials have been reported in Lee (1990), Crawley and Lazarus (1991),
and Wang and Rogers (1991). And Lee (1990) derived a theory for laminated piezoelectric plates,
where the linear piezoelectric constitutive equations were the only source of coupling between the
electric field and the mechanical displacement field. However, these models are based on classical
laminated plate theory, which neglects the transverse shear effects. But the effects of transverse
shear stresses are important in composite materials because the interlaminar shear module are
usually much smaller than the inplane Young's module. An overview of recent developments in the
area of sensing and control of structures by piezoelectric materials has been reported in Rao and
Sunar (1994). Recently G. Mei and Y. Shen (1997) used optical fiber sensors to measure transient
impact induced strain.

There are two essential ideas in this paper. Firstly, the purpose of present study is to derive a set of
approximate governing equations for laminated beams with piezoelectric laminae using Hamilton's
principle based on a higher order shear deformation theory, which does not require shear correction
factors. Secondly, the objective of the present study is to develop exact solutions for the frequencies
of free vibration for simply supported, laminated beams composed in part of piezoelectric layers.
The simply supported beam is one of the few geometries for which the in-plane function can be
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selected to exactly satisfy the governing equations and boundary conditions. The arbitrary

transformations of constitutive equations for smart composite structures are also presented.

DISPLACEMENT FIELD

In this paper, the model of beam comes from the plate. It is a specific plate. The assumption to the
point where exist theories can be utilised. In the higher order shear deformation theory of Reddy
(1984), the displacement field chosen is of a special form. The form is dictated by the satisfaction of
the conditions that the transverse shear stresses vanish on the plate surfaces and be nonzero
elsewhere. This requires the use of a displacement field in which the inplane displacements are
expanded as cubic functions of thickness co-ordinate and the transverse deflection is constant
through plate thickness. The displacement field in Ref.[10] can be written as:

u2(xY'Z't't=v(XY,) + Z -3-h 4 + (1)

u3 (x Y, Z, t) = w(x Y, t)
The salient feature of this particular theory is that it allows for cubic distortion of the normals to the
midplane while at same time eliminating the need for shear correction factors normally used in the
first order shear deformation theory.

Using the above definitions, the displacement field for beam can be expressed as:

Ul (XYZ't) =U(X, t) + z Y/--t' 4 ifz

u2 (xY, z, t) = 0 (2)

u3 (x, Y, z, t) = w(x, t)
where u(x, t) and w(x, t) in Eq.(6) are the mid-plane displacements and Vi(x, t) is the rotation of a
transverse normal to mid-plane about y-axis. The displacement for y-axis is neglected and u, w and

Sare only function of x-axis and time (t) in the present model of the beam.

CONSTITUTIVE RELATIONSHIP

The laminae constitutive equation accounting for piezoelectric effect for the k' layer in the
miaterial axes can be written as

1l Q11 Q12  0 0 0 i 61 0 0 e31
0"2  Q12  Q22  0 0 0 £2 0 0 e32  El

O23 0 Q4 0 0 1723 -0 e 2 4  0 E2 (3)

r13 0 0 Q55  0 Y13 e15  0 0 E3Jk
12 k 0 0 0 Q66 kYI2Jk 0 0 0k

{D,! 0 0 0 el, 0 '62 Lo9gU 0 0 El~

D2 : 0 0 Y23 + 0 922 0 E2 (4)
D3 k [e 31 e3 2  0 : 0 0 13 0 0 g 33 k E3 lk

.712 k
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However, the material axes of laminae often do not coincide with the plate co-ordinate directions.
Then, transforming constitutive relations from the principal material directions to the laminate co-
ordinate directions is needed (Ref. [7]). Upon transformation for using transformed matrix [T] and
[LAo] (see Appendix), the lamina constitutive equations can be expressed in term of stresses and
strains in the laminae co-ordinates (x, y, z) as

ax Q1 Q12  0 0 Q16 -OX 0 0 eM3
"a Q Q 12  Q22 0 0 Q26 'Y 0 0 e-32  Ex

=Z 0 0 Q44  Q45 0 Y ej e2 4  0 Ey (5)

T 0 0 945 a5 0 . 'e F e25  0 EZ k
T"XY y k 016 Q26 0 0 Q66 k ."y Ik 0 0k6 k

Ex

D x0 ' 1 Z 15 0 [y1 1 9 -1 2 0 E
{DZ0 0 (6)E~i

eF24 eF25 e3  Y. +: 91~2 k22  0 6D Z k e-'31 eF32 0 0 j36 kYXZ 0 0 933 k Ez- k

XYk

The constitutive relationship for the k'i laminae can be simply expressed by using matrix expression
as

{Iaik= [Q]k {f- - [k], {W}k (7)
{D}k = j]k 1}k + []k1{Wk (8)

where {&} is the strain, {a} is the stress, {D} is the electric displacement, {E} is the electric field
intensity, [2] is the elastic stiffness matrix, [r] is the piezoelectric stress coefficient matrix, and

[ is the permitivity matrix (for more details, see Appendix). For non-piezoelectric laminae, it can
be modelled by simply setting the piezoelectric constants to zero.

Piezoelectric materials possess anisotropic properties. PVDF (polyvinylidene fluoride) and PZT
(lead zirconate-titanate) are excellent candidates for the role of sensors and actuators. Piezoelectric
material layers are polarised in the thickness direction and exhibit transversely isotropic properties
in the xy-plane. Considering piezoelectric materials while retaining the anisotropic behaviour of the
master structure, Eq. (5) can be written as

Qx I O1 0 0 9I66 Ex 0 0 e 3 1

Y Q,2 Q2 2  -0 0 926 eY 0 0, 0'31
"y = 0 0 Q44 Q&5 0 • > - e25  el5  0 (9)

r" 0 0 Q45  Q55  0 j~ 15 eF25  0 E k
VXy k9 16 926 0 0 Q66 kLyk 0 0 0 k

For a beam problem, we can use ay = Ty. = =0 while assuming the ey rYy P 'VXY 0, to
obtain the following reduced constitutive equations

{ } 3]{ } [ k (10)

where 9=91+( O16 026 --12Q66 ý12+ (O 12 0 26 -216

922U66 -226 22 Q66 -02 )U26

-- - - ( 912Q66 _Q16926 -
Q4• e31  1- - - 1 31

S 44 Q 222966 -26 I
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The strain displacement relations for a laminated beam based on a higher order shear deformation
theory can be expressed as (Ref.[2])

r 0 1 3 2
ex = 6X + ZKX +zKc (11)
xz= = YO + z 2 K=

where

o O.U IL9, 2 4 (,1a f w12

S(12)Y,,, V/,,+ F,= +
e~~=-; K=p;3 2  Ox 2

In this paper, the laminated beam having length 1, width b, and thickness h. We assume that the top
and bottom layers of the present beam model are sensor and actuator layers. Using Eq.( 11) in
Eq.(10) and integrating through the thickness, the laminated beam constitutive equation can be
written as:

Nxl ,, ,B11 Elle 1 [NP]

1(3bM.,J B1 LDs F, JI k,,J f P (

where {NX,MX, P•}=J• Gr(1, z, z3d,{QX,RXZ}=J~h TXZ(,z26dz

2 2

B1. 1 ,> }= s:. A1' H .}=. Jzk) + i,: ez, z2; , z3, = z6b

k 1

1'5, 55 } F 55 I J z2 .. i~'

where J{Nx,MXP P}JZj3iCk(1,ZZz, ~Jz,,..R~j3i hrX(1, Z 3} Z

Where the Qare the kth material constants. For non-piezoelectric layers Qu = ,,ad o

2, and 4f6P

piezoelectric layers Q•0Q• =p

SENSOR EQUATION

,~The Eq.(6) is used to calculate the output charge created by the strains in the beam. Since no
external electric field is applied to the sensor layer, the electric displacement developed on the
sensor surface is directly proportional to the strain acting on the sensor. If the z-axis is the poling

axis, the charge is collected only in the z-direction. Hence, only D• is considered. For a PVDF layer

acting as a sensor E2 = 0 and (Ref.[6])
D =e_ ( 3 31) (14)

The total charge measured through sensor layer is given by (Ref. [8])

q(t)= I-[(JR D~dA)2 _2 + (JRDXdA)•=20] (15)

where R is the effective surface electrode of the piezoelectric layer. Substitution of Eq.(14) in
Eq.(15) results in

k(t =Zý 0•- 1 3 2)bx

Dqz) 31,--. + ,,4 +Z ZK,,) (16)
whee D ='4l=zl +,o), D; +zo (

2 29
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When piezoelectric sensors are used as strain rate sensors, the output charge can be transformed to
sensor voltage as (Ref. [6])

Vs(t)= q(t) (17)
C

where C is the electric capacity of sensor.

ACTUATOR EQUATION (EQUATION OF MOTION)

In this paper, we use the negative velocity feedback control. Then the applied voltage across the
actuator layer can be expressed as (Ref.[8])

VA = Gji(t) =Gi dq(t) (18)
dt

where G, is the gain to provide feedback control.

The electric field intensity Ek can be expressed as
E k VAE -- (19)

hk

where hk is the thickness of the actuator layer.

The mathematical statement of Hamilton's principle can be expressed as
(bT - SU + SW)dt = 0 (20)

where T is the kinetic energy, U is the strain energy, and W is the work done by surface tractions.
The variation of the kinetic energy is given by

6T = fl{&dr [.I{fi bdx (21)

1 0 11 131
`1 0 ofwhere 

[u}= uwI , 0 15 12

I3 0 12 141"2 z, ( 3 z4 Z6
and (11,2,13,14,11,1 ) pk(1, Z,z,, Z .Z Z

k=1-

4 14, 16 1,- 4 - 4 , - 8- l6 , 8 16

3h- •h4, h7 3h2 9s 9h 7
The variation is strain energy of beam can be expressed as

fp &,2l

YU = J0( & +(MN6k ++ Mk +Q&,5y +Rx.Sk&,.)bdx (22)

The virtual work done by external forces is given by

6W = J pbwbdx (23)

where p = p(x, t) is the uniformly distributed load.

Substituting expressions from Eqs.(21), (22) and (23) into Eq.(20), using Eqs.(13a-b), and using the

derivative operator forms, the governing equation can be written as (Ref.[5])

ONxP

L1 2  L 22  L23  p 3h 2 8x 2

L13  L23  L33 I Mf 40Pf

ax 3h2 
2 x
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where AO =; 55 - 8-A55+ 1 6fF5 5 4 -
h -•- 3h'

- 8 - 16 4 - 16
Do =T11~F -FI+ H , 0 TF 16 -7 1

3h' 9h4  , 3h- 1 9h 4 ý

and L, are the derivative operators given by

a2 82 4 a3 a3 a2 a2Lli =All-- I El I,-12 1 LI3 =B0 -13Ox •2 L2 h2 Ox3 axat 2' - a-t

16 a3 a2 a2 a4 a3 a a3
9L22 -A 0 9 I +1, -5 2 L23  0 -Fo--A--1 20 - t2
-94 ýJ OX 02 -F- t -X 2 at 2 ,X O-X aXat 2

L 33 = -A 0 +Do 2 -_ 2

aX x2 at2

Equation (24) is subject to the following boundary condition:

x=O, and x=l: N.=,R.,oru=i

x=0, and x=l: Q=Q,,orw=

x=O, and x=l: P,= ,orP=
' ax ax

x=0, and x=l: M" = M, or =V
S4 P 4 4P _4

where MA =M• ---- _h , =Q, -hR=,,=Q +- ," "denotes the known value.
Mx h~xx 3h~a

METHOD OF EXACT SOLUTION

We assume that the solution for the displacement components of the simply supported beams are
sought in the formoo Mi oo o mnx iot• M2

Yu,,, cos e , w= Y w,, sin m e, , V = VIM cos--e (25a-e)
?==1 l . rn-1 l

where o is the frequency of the extend force.

The expressions (25a-c) are satisfied the boundary conditions of the simply supported beam:

N, =0, w=0, P, =0, AMý =0 (26a-d)
Substituting the expressions (25a-c) in Eq.(24), extending the uniformly distributed load p(x, t) in= 2 ool mnxa

trigonometric series gives: p(x, t)= Zp sin e"" , where pm=- •lEfloPsm-i---x and
rn=1 1 rn=11

canceling the common factor, we can get simultaneous equations about (u., w., V. ). Solving
these simultaneous equations, we will get the displacement of the simply supported beams. For the
sensor layer, we assume the electric field E to be zero. Then, from the sensor equation, the total
charge q(t) will be derived. For the actuator layer, the applied electric field E will be considered.
From solving the governing equations, the displacement of the beam will be derived after the
feedback control.

CONCLUSIONS

In this paper, the governing equations of smart composite beams with the piezoelectric sensor and
actuator, which based on higher order shear deformation theory, have been presented. The sensor
and actuator equations and the arbitrary transformations of constitutive equations for smart
composite structures were given. Finally, the method of exact solution for the simply supported
beam was also discussed. Due to a space constraint, the numerical results will be presented in
another paper.
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APPENDIX

The transformed matrix

cos 2 o sin 2 0 0 0 2cos0sinO
sin2' Cos 2

0 0 0 -2cos0sin9 [Cos0 -sin9 01
T0 0 COO -sinO 0 IT, I sino coso 0O

0 0 sinO cos0 0 0 0 1

-cosOsin0 cos0sinO 0 0 cos 2 O-sin2 9
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The transformed material constants

Q1" = Q1 cos 4 0 + 2(Q2 +2Q 66 )Sin2 0cos2 0+Q 22 sin 4
09

U12 = (Q11 +Q22- 4Q66)sin2 0cos 2 0+Q12 (sin40 +cos 4 0)

Q22 = Q9 sin 4 0 + 2(Q12 +2Q 66)sin 2 Ocos 2 9+Q22 COS4 0

U16 = (Q,1 - Q12 - 2Q66 )sin 0 cos 0 + (Q,2 -Q, + 20 66)sin 3 0 cos 0

Q26 =(Qu, -Q12 -2066)sin 3 0cosO+(Q12 -922 + 2Q 66)sin 0 cos' 0

-66 =(aQl +022 -2Q12 -2Q 66 )sin2 0COs 2 0+0 66(sin 4 O+COS4 9)
a44 = Q44 cos 2 0 + Q55 sin2 0

Q49 = -Q44 sin 0 cos 0 + Q55 sin 0 cos 0
U-1 = Q44 sin2 0+Q 55 cos 2 0

The piezoelectric stress- and permitivity coefficient (after transformation)

e31 = e31 cos2 9+e 32 sin20

e32 = e3 , sin2 0+e 32 cos 2 9
e-'4 =e15 sin~cos9+e2 cos~sin9 g,1 =g,, cOs2 9+g 22 sin 0
j1 4 =-e 5 sin 209±20 + e2 2 = -g 10 sin0cos9+g 22 sin09cos

-24 = -e sin2 +e24 Co 1  , sin 9 2 2 s

e,5 =e,, sin- 2 --e 24 COS 2 o k22 = g9l sin2 0+922 COS20

e-2, = -e 15 cos 0 sin 0 - e24 sin 0 cos 0 g93 = g 33

e-36 = (e3, - e32)sin 0 cos 0
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DYNAMICS AND BUCKLING
OF A MULTILAYER COMPOSITE PLATE

WITH EMBEDDED SHAPE MEMORY ALLOY WIRES
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1 Institute of Fluid Flow Machinery, 14 Fiszera St, 80-952 Gdansk, Poland
2 Institute of Fluid Flow Machinery, Poland

INTRODUCTION

The paper illustrates stress-strain relationships for a single composite lamina with
embedded SMA fibres and their influence upon certain changes in natural frequencies and
thermal buckling of a composite multilayer plate. Governing equations based on the finite
element method are presented in the paper. The plate is modelled by plate finite elements.
The elements have eight nodes with five degrees of freedom at each node (i.e. three axial
displacements and two independent rotations). For both axial displacements and
independent rotations biquadratic shape functions are used.

A limited number of papers concerned with natural vib•ration of SMA fibre-reinforced
composite plates can be found in the present literature. Zhong, Chen, and Mei [8],
analysed thermal buckling and postbuckling of composite plates with embedded SMA
fibres using a finite element technique. Ro and Baz [4] introduced fundamental equations
governing dynamic behaviour of Nitinol-reinforced plates. Applying the finite element
method they studied dynamic characteristics of such structures.

In the present work a more general description of this problem is introduced. The finite
element analysis results presented in this work are compared to those obtained from an
analytical continuum solution.

MECHANICAL AND PHYSICAL PROPERTIES OF SHAPE MEMORY ALLOYS

Mechanical and physical properties of shape memory alloys strongly depend on
temperature and initial stresses [2, 3]. Changes in temperature and initial stresses involve
changes in the volume fraction of martensite in the alloys. During the martensite
transformation recovery stresses appear. These recovery stresses are not only a function
of alloys temperature but also depend on initial strains 6. In Fig. 1 the SMA recovery
stresses versus SMA temperature for four different initial strains are presented.

It can be easily noticed that an increase in the initial strains involves higher recovery
stresses in the SMA wires and simultaneously changes in the temperatures of phase
transformation are also observed.
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In this paper the following material properties for the SMA (Nitinol) wires are used (see
also [5]): austenite start temperature TY=37.8 TC, austenite finish temperature T=62.8 °C,
Young's modulus Er (from [5]), G,=24.86 GPa for T<T,, G,=25.6 GPa for T>T, Poisson
ratio i,=0.3, density p=6450 kg/m3, thermal expansion coefficient a,10.26xl×0- 1/0 C.

360-

300-

260160

,i • - . . . . .Composite

260-

0- Sleeve - -SMA fiber

20 40 60 80 100 120 140 160 t80
Temperature of SMA fibers [ fC]

Fig. 1. Stresses in SMA fibres as a function Fig. 2. A SMA fibre-reinforced multilayer
of temperature and initial strains. composite plate.

STATE OF PROBLEM

The SMA fibre-reinforced laminated composite plate which contains embedded the
SMA wires is considered, as it is shown in Fig. 2. A single composite lamina of the plate
has arbitrary orientation of graphite fibres. The SMA fibres are placed in the neutral plane
of the plate.

The displacements field within the single plate lamina is assumed due to the first order
deformation theory. In this analysis a plate-bending quadrilateral finite element called
PBQ8 [7] is used. This element has eight nodes and five degrees of freedom at each
node. The shape functions of the element can also be found in [7].

U, =ff I{ Al 8 Uo)2 +A12ea u,19yV. + 2 +A

+A44 + +±Qw yw2)2+A 45raI+dg^ +f .,WO +t.wA,,w]

+A 54±[ 2 +iid.wo + -(2LxWo)21+A 64[(.9yUo)2 +9yUodv + +(c9 Vo)2]+ (1)

+D1 c9 yd- + 4- j22 (e9/J) 2 +D 6 [_ ('0yi) 2 + 9  +4-(f) Jd

For SMA fibre-reinforced hybrid composite plates subjected to a combined external,
thermal and recovery stresses load governing equations of motion can be obtained
through the principle of virtual work. For the plates which are mid-plane symmetric there
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is no coupling and the strain energy stored in the plates finite element is given by Eq. (1)
where formulae to calculate Ay and Dy can be found in [6].

Work done by the in-plane forces which includes the recovery forces of the Nitinol
fibres, the thermal loads induced by heating the Nitinol fibres and the external in-plane
loads can be written in the following form [2]:

S= +hfJ W[N"(O"W)2 + (i9yw) 2  2NY(0.,w)dOw)]dA (2)
A

where: Nx=Pm,x+Pt,-Fwx, Ny=Pm,y+Pty, Nxy=Pm,.xy+Pt,.y with P,,n,,yy and Pt,,,y,, denoting the
compressive in-plane mechanical and thermal loads in x, y and xy directions. Symbol F,
denotes the total tension developed in the Nitinol fibres:

F =f[ 0 -ar(T -o)]E, dA (3)
4

where ar, E, and A, are the thermal expansion coefficient of the SMA wires, their
modulus of elasticity and their cross-sectional area, respectively. The thermal loads Pt are
given by the relations:

o[, ,ay,aY]ATdz (4)

Matrix [Qk] in Eq. 4 has a well known structure and as well as formulae to calculate
quantities a,, ay and ay may be found in [6].

The thermal loads are generated by changes in temperature AT of the element and are
caused by both activation and deactivation processes of the Nitinol fibres. Using standard
finite element formulae the inertia and stiffness matrices of the plate can be determined.
The governing equation has the following form:

[M]{(} + qK] + [K] - AT [KD]){q) IF) (5)

where [M] and [K] are the system mass and stiffness matrices, [Kr] and [Kr] are the
geometric stiffiess matrices due to recovery stress and thermal stresses, respectively. The
natural frequencies o and mode shapes {q0}of vibration are obtained from the eigenvalue
problem. Equations governing the thermal buckling are obtained by neglecting the inertia,
bending membrane-coupling, and bending force terms as:

([K8 ]+[K, ]- AT.[KT ]){q°O} = (6)

The changes of the critical temperature AT are the eigenvalues which correspond to
buckling modes. The temperature AT is considered as a steady-state temperature.
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NUMERICAL CALCULATIONS

Numerical calculations were carried out for a simply supported SMA fibre-reinforced
multilayer composite plate for its following dimensions: length 600 mm, width 600 mm
and thickness 8 mm. The plate were consisted of 8 layers of composite material with the
changing orientation of graphite fibres (0/90/90/0/0/90/90/0). The plate was modelled by
64 plate elements and the mesh size was 8x8. Each layer of the plate was made of
graphite-epoxy composite (fibre: Young's modulus EF=275.6 GPa, shear modulus
Gf=l14.8 GPa, density pt=1900 kg/M3, Poisson ratio vf=0. 2 , coefficients of thermal
expansion oV=24.4xl0- 1/°C; matrix: Young's modulus E.=3.43 GPa, shear modulus
Gm=1.27 GPa, density pm=1250 kg/m3, Poisson ratio Vm=0.2, coefficients of thermal
expansion am=64.8xl0- 1/C. It was also assumed that all mechanical properties except
the angle of the graphite fibres are the same for each layer.

The volume fraction of the graphite fibres in each layer was 0.2. In the present study the
SMA Nitinol fibres covered only 5% of the cross sectional area of the plate. They were
embedded inside the neutral plane of the plate. It was assumed that the material
properties (except density, the angle of the graphite fibres and the coefficients of thermal
expansion) were functions of temperature, as it is presented in Fig. 4 (see also [1]). In this
study only a uniform temperature distribution in the plate was considered (see Fig. 3).

66 t.00 -

ever Ir

- 0

o $

eri
0.92

1.1

o 30-

CL Zve V E..4E 0
C)26-

20 - 0.92
20 40 60 80 100 120 140 160 20 30 40 60 60 70 80 90 100

Temperature of SMA fibers [°C] Temperature of SMA fibers [I C]

Fig. 3. Temperatures of the plate vs. Fig. 4. Temperature dependence of
temperature of SMA wires, composite material properties.

The results of numerical investigations illustrate influence of the SMA fibres temperature
upon changes in bending natural frequencies of the analysed plate. In Figs. 5-6 the
changes in the first bending natural frequencies are presented. The results of the
calculations are related to those obtained for the same plate without the SMA wires. It
can be clearly observed that the activation process of the SMA wires involves an increase
in the bending natural frequencies. This effect rises when both temperature and initial
strains are higher.
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J1 .4

Fig. 5. Influence of SMA fibres Fig. 6. Influence of SMA fibres
temperature and initial strains (so=1%) temperature and initial strains (so=4%)

upon the relative change of the first natural upon the relative change of the first natural
frequency. frequency.

The results obtained in this work demonstrate the potential effectiveness of SMA fibre-
reinforcement in composite structural elements in the control of vibration. The effect of
SMA fibres activation. on the amplitude of vibration normalised with respect to the
amplitude of vibration of the uncontrolled can also be analysed.

In Figs. 7 and 8 changes in AT in case of the first and third bending thermal buckling are
presented. The results of numerical calculations are related to those obtained for the same
plate without the SMA wires. It can be clearly observed that the activation process of the
SMA wires involves an increase in the critical temperature change. This effect rises when
both temperature and initial strains are higher.

CONCLUSIONS

Applications of the SMA Nitinol fibres in the natural frequency analysis of composite
plates have been successfully demonstrated. The fundamental equations governing
behaviour of SMA fibre-reinforced multilayer composite plates have been introduced.
The stress-strain relationships for a single composite lamina with embedded the SMA
fibres has been presented. The finite element formulation to predict changes in natural
frequencies and modes of vibration of composite laminates with the SMA fibres has also
been shown in the paper.
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Fig. 9 Influence of SMA fibres temperature Fig. 10 Influence of SMA fibres
and initial strains (co=l, 2, 3, and 4%) upon temperature and initial strains. (so=l, 2, 3,

the relative change of the first critical and 4%) upon the relative change of the
temperature. third critical temperature
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ABSTRACT In this paper, some general problems. of piezoelectric sensor mechanics have been
discussed. It has shown that modal sensor can not be constructed for general case of beam, plate and
shell, except the case of Lee and Moon (1990). It means that distributed sensor generally detect a
number of vibration modes simultaneously and can reduce but not completely vanish the control
spillover. Random sensor, noise effects, finite element interpolation of sensor equation and smart
finite element formulation of smart structures have also been presented. Although with emphasis on
plates and beam, all results presented here are also valid for shells.

"INTRODUCTION

The insatiable demand for new generations of industrial, military, commercial, medical, automotive
and aerospace products have fuelled research and development activities focused on advanced
materials and smart structures. This situation has been further stimulated by the intellectual curiosity
of Homo Sapiens in synthesising new classes of biomimetic materials, and, of course global
competition by the principal industrial nations is also a parameter in the equation governing the rate
of technological progress. A fundamental axiom of this field of advanced materials is that the ultimate
materials are the biological materials which are assumed to be somewhat focus of this field is to
replicate these characteristics and properties in synthetic materials which can be employed in diverse
scientific and technological applications.Thus by integrating the knowledge-bases associated with
advanced materials, information technology and biotechnology, these three mega-technologies are
facilitating the creation of a new generation of biomimetic materials and structures with inherent
brains, nervous systems and actuation systems which are currently a mere skeleton compared with the
anatomy perceived in the not-too-distant future. This quantum jump in materials technology will
revolutionise the future in ways far more- dramatic than the way the electric chip has impacted our
lifestyles. These new materials are termed Smart materials or Intelligent materials and they will
typical feature fibrous polymeric composite materials, embedded powerful computer chips of gallium
arsenic which will be interfaced with both embedded sensors and embedded actuators by networks of
embedded optical-fibre wave-guides through which large volumes of data will be transmitted at high
speeds.Today's material revolution is the cornerstone of the triumvirate of mega-technologies, which
comprise the essential, integrates of this embryonic field. These technologies will have a mutually
symbiotic relationship and will significantly impact one another resulting in synergistic technological
advances cannot be foreseen today. However, a natural consequence of advancing on these
technological disciplines, will be the impending revolution in smart materials and structures.
The classes of smart materials and intelligent structures are divers and the application of them is
largely unknown. However, what is known is that this new generation of materials will certainly
revolutionize our quality of life as dramatically as the state-of-art materials did in the past, with stone
implements triggering the Stone Age, alloys of copper and tin triggering the Bronze Age, and the
smelting of irom ore triggering the Iron Age. The time-line of humankind is located at the dawn of a
new era, The SmaqMaterials Age.

SMART STRUCTURE AND ACTIVE CONTROL

In the context of intelligent materials and structures there is considerable focus on sensors and
actuators and control capabilities. The current generation of smart materials and structures
incorporate one or more of the following features:
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"* Sensors, which are either embedded within a structural material or else, bonded to the surface of
that material. Alternatively, the sensing function can be performed by a functional material, which,
for example, measures the intensity of the stimulus associated with a stress, strain, electrical,
thermal, radioactive, or chemical phenomenon. This functional material may, in some
circumstance, also serve as a structural material.

"* Actuators, which are embedded within a structural material or else, bonded to the surface of the
material. These actuators are typically excited by an external stimulus; such as electricity in order
to either changes their geometrical configuration or else change their stiffness and energy-
dissipation properties in a controlled manner. Alternatively, the actuator function can be
performed directly by a hybrid material, which serves as both a structural material, and also as a
functional material.

"* Control capabilities, which permit the behavior of the material to respond to an external stimulus
according to a prescribed functional relationship or control algorithm. These capabilities typically
involve one or more microprocessors and data transmission links, which are based upon the
utilization of an automatic control theory.

The goal of creating a design that limits vibration amplitudes and duration in the presence of both
shock and vibration disturbances faces limitations in the form of constraints on the choice of mass,
damping, and stiffness (static deflection) values. For instance, in the design of an isolation system, it
often occurs that the desired calls for a value of stiffness that results in a static deflection that is too
large for the intended application. Sometimes, a given isolation design might be required to operate
over a load range that is impossible to meet with a single choice of mass and stiffness. In addition,
once the materials are fixed for a given system, it is difficult to change the mass and stiffness of the
system more than of a few percent. Basically, the choice of the physical parameter m, c, and k
determines the response of the system. The choice of these parameters to obtain a desired response is
the design problem. This design procedure can be thought of as passive control (e.g., adding mass to a
machine base to lower its frequency). If the constraints on mass (M), damping (C), and stiffness (K)
are such that the desired response cannot be obtained by changing M, C, and K, active control may
provide an attractive alternative.

Active control uses an external adjustable (or active) device, called actuator to provide a force to the
device, or structure whose vibration properties are to be changed. The force applied to the structure by
the actuator is dependent on a measurement of the response of the system. This is called feedback
control. If the goal of the active control system is to remove unwanted vibration, the control system is
called active vibration suppression, which consists of measuring the output or response of the
structures to determine the force to apply to the mass to obtain the desired response. The device used
to apply the force, together with the sensor used to measure the response of the mass and the electronic
circuit is called the control system. The mathematical rule used to apply the force from the sensor
measurement is called the control law.

Active control systems provide increased versatility and better performance in the design of vibration
suppression systems. However, they do so with substantial increase in cost and potential decrease in
reliability. Even in the face of increase d cost and complexity, active control methods for vibration
suppression are often the only alternatives.

SENSORY ELEMENTS

It is clearly evident, therefore, to understand sensor's mechanism is essential to the full picture of smart
structure. Crawley (1994). Sensory elements of smart structures must be sensitive to the mechanical
states of the structure and capable of being highly distributed. The ideal sensor for a smart structure
converts strain orC displacement (or their temporal derivatives) directly into electrical outputs. The
primary function requirements for such sensors are their sensitivity to the strain or displacement (or
their time derivatives), spatial resolution, and bandwidth. Secondary requirements include the
transverse and temperature sen'sitivity, linearity and hysteresis, electromagnetic compatibility, and size
of sensor packaging. Although actuators are so large they must be explicitly accommodated in the
built-in laminates, it is desirable to make sensors small enough to be placed in inter-laminar or
otherwise unobtrusive positions.
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Researchers [1-8, 13-19] have investigated sensor mechanism. Lee and Moon (1990) proposed various
modal sensors; and Callahan and Baruh developed to segmented piezoelectric film sensor. (1995);
Tzou, et al (1993) discovered membrane modal sensitivity and transverse modal sensitivity for
piezoelectric shell sensor. Nevertheless, some problems are still to be reconsidered, for instance,
nonlinear effects, random effects and possibility of general modal sensor. This comes to our
motivation.

In this paper, some general problems of piezoelectric sensor mechanics have been discussed. It has
shown that modal sensor can not be constructed for general case of beam, plate and shell, except the
case of Lee and Moon (1990). It means that distributed sensor generally detect a number of vibration
modes simultaneously and can reduce but not completely vanish the control spillover. Random
sensor, noise effects, finite element interpolation of sensor equation and smart finite element
formulation of smart structures have also been presented. Although with emphasis on plates and beam,
all results presented here are also valid for shells.

WORKING PRINCIPLE AND BRIEF SUMMARY OF PIEZOELECTRIC SMART STRUCTURES

The deformation of piezoelectric structures will let sensor generate charge; the total charge developed
on the surface of the sensor layer is q(t). When piezoelectric sensors are used as strain sensors, the

output charge can be transformed to sensor current i(t)=--!d!, and current is converted into the open

circuit sensor voltage output of controller V(t) =-Gei(t), which is actually the applied load on the
actuators of smart structures given by controller. The actuator layers will deform and are result as
damper of the smart structures.

The working principle of piezoelectric smart structures is illustrated in Fig. 1.

r i~Controller
]Smart Structures

SFeedback V(t)

Figure 1. Smart structures working principle

According the working principle, the simulation of smart structures consists of following steps.

1. Sensor analysis - this step is to formulate sensor equation and get current l(t).
Since no external electric field is applied to the sensor layer, the electric displacement developed on
the sensor surface is directly proportional to the strain acting on the sensor. If the poling direction is z
for sensors with the electrodes on the upper and lower surfaces, the electric displacement is

Dz= e 31ex + e32ey + e367y . (I)

The total charge oý the sensor layer will be

q(t) = Dzdxdy, (2)

Where A is the domain of the sensor. The current can be obtained by

it)- or i(t) fJ(e 31 a1 + e12SY + e3 6 'xy)dxdy. (3)

It can be further expressed in terms of velocity.
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2. Controller analysis - this step is to design a control mechanism, or called as feedback analysis,
usually, this step is simulated by introducing a series of gain Gc and negative velocity feedback
control.

The input for controller is i(t), the output of the controller will be in voltage
V(t) = -Gel(t).- (4)

The gain Gc plays a role as amplifier and "-" present the negative feedback control. In other word, "

Gc" represents a controller in practice.

3. Actuator analysis - this step is to formulate actuator equation, that is, the reaction forces and
moment supplied by the actuator layers.

Since the actuator layers are thin, so that the electric field intensity E will be uniform for each layer.
For the kth layer,

E~k = Vk/(5
S/hk' (5)

where Vk is applied voltage across the kth layer and hk is the thickness of the kth layer. According
the definition of resultant forces and moment of laminated structures (beams, plates and shells), the
contribution of actuator layers on resultant forces is

n
N4p =" (Ekzhk(zk - Zk_- 1 (6)

k=1

and resultant moment is
I nM P k hk ( 2 _ , , -(7)

= (Ezh XZk - (7)
k=l

where Zk is the distance of kth layer to the reference surface of the smart structures, and number n
denotes the total number of layers.

4. Smart structure analysis - this last step is to combine the above all results to formulate a
governing equations by Hamilton principle, called smart structures equations (SSE).
By using Hamilton principle, the smart structure equations(SSE) can be formulated. In finite element
method form, the SSE can be written as

Mii + GcCi + Ku= Fxt. (8)
This equation is quite general for linear case and it has clearly show that actuator is like an active
damper. The stiffness and mass matrix are same as ordinary laminated structures. This remarkable
conclusion makes the numerical calculation very easily, and all elements developed for non-smart
structures can be also used to the analysis of smart structures. The only different is each element has
one more degree of freedom, which is electric voltage or precisely, the gain Ge . By modal analysis,
D J Inman (1996), the SSE can be transformed into standard principle coordinate form
i (t)+ 2 1io)ji(t)+ o~ri(t)= f(t), its solution is

ri(t) = di exp(-ýicoit)sin(odit + i)+ 0 exp(-ýioit) fi(r)exp(oiT)sin(0di(t - r)dT, (9)
0•di

where (rdi =(Oi - I 2 i = Gc'i = d 0 2 tan-_ o i0d . The list
2mi3 -i 0) - di ,io -taniri

of above equation is just wish to show how the gain Gc influences the damping coefficient ¢i,
frequency coi, amplitude di and phase 1 .
From the steps of analysis, we can easily see that sensor analysis is essential for pick up information of
the motion of structure. Without right sensor information, control of smart structures would be a
dream.

SENSOR ANALYSIS - LINEAR CASE

A linear piezoelectric classical plates theory than incorporate the piezoelectric effect into the elastic
laminate constitutive equation has been studied by Lee (1990), Lee and Moon (1990), Callahan and
Baruh (1995), all of them assumed the in-plane displacement u and v to be negligible compared to the
transverse deflection w and the output signal is generated by w only. In this paper, we will not omit
the in-plane displacement, because they should be considered in the case have laminated plates, unless
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tile sensor were in the mid-surface. Beside that, the effects of transverse deformation will be also
considered because the inter-laminar shear Modula are usually much smaller than the in-plane Young's
Modula. Chandra (1993. 1997). H-uang and Sun (I998a.b).

If using M indlin plates theory. the charge generated by each piezoelectric sensor is given by

q(t)= fj FrP0{eTr{L}({u} + zr{0})dxdy, r = 1,2,..., N (10)

This equation is generally called sensor equation which give signal output q(t); which is an average
quantity over the sensor coverage. It has proved that frequency of charge q,(t) is equal to the frequency
of sensors and their host structure. In which

te3, 
0

of the laminate and N is the number of piezosensors, A is the sensor coverage and is the polarization
profile (Lee and Moon. 1990) and F(x,y) is Heavyside type function

F Ix ) if (x,.~i within the rth senso coverage
{1. y) i otherwise

As Tzou et al (1993) pointed out that signal output of sensor can be divided into two parts or called
sensitivities: (I) transverse modal sensitivity and (2) membrane modal sensitivity. In general, the
transverse modal sensitivity is defined for transverse natural modes and the membrane modal
sensitivity for in-plane natural modes. But in the case of Eq(A), the transverse modal sensitivity is
defined for rotation or precisely change of curvature. There is no explicit contribution from transverse
deflection w; the reason is that in the sensor's constitutive equation both e33 and e34 are zero. In order
to capture the contribution of w, it is suggestion to choose a piezoelectric material have no-zero e3

and e3,4.

One-Dimensional Case: Composite Beam

In this case. v=O and displacement is the only function of x, then Eq(10) simplifies to the one-
diimensional sensor equation

b

q.(t) = Fr.(x)e31(u,×+z,0.x)dx, where F, = f FrPody (12)

From linear vibration theory, we have following solution

u(xt) = uI(x)lm(t), 0 (x, t)0 -m(X) m(t) (13)
In=1 In=1

Substitute Eq(13) into Eq(I 2), we have

q,(t)= E[A, nL(t) + ZrBj,n (t)0 (14)

where

A 1 =e , fr,.(x)u,., dx, BIT = e.11 Ef(X)Om.xdx (15)

Am and Bill are constant coefficient. By using classical plate theory and omitting in-plane
displacement u and v, Lee and Moon have shown that if the spatial electrode pattern of tile rth lam ina
is proportional to the modal strain distribution along the length of the plate, one can obtains a true
modal sensor based on the orthogonality of the eigenvalue-solution of the beams with respect to their
stiffness. In other words, observer spillover will not be present in systems adopting this type of
sensors. Further ilore, Lee and Moon also proposed modal actuator which excites each particular
mode independently so that actuator spillover will not be an issue in one-dimensional plates actuated
by this type of actuator.

Unforttnately, forMindlin plate theory because of no general orthogonality for both um and rotation
01, to have the above modal sensor will be impossible whatever how we choose rr (x). In other
words, observer spillover will always be present in the system adopting Mindlin type of sensor. As a
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consequence, the modal actuator will be a dream in this case. Only one exceptional case, the sensor
can only be used as membrane sensor if it is placed on the mid-surface, zr=O. In this case, one can
obtain membrane modal sensor and membrane modal actuator for beam type plates.

Twio-Dimensional Case: Composite Plates

Similar to beam, vibration solution for plates is

u(x, t) =Y Ur (X)P, (t), v(x, t) = v,(X)V. W (t),
M=1 (16)

0" (x, t)= -'0x (x)/)xM. (t) 0y (x,t) = -eym (x)Iqr. (t)

'n ý1 
in= ]

Then, the charge from Eq(10) will be

qt(t)= Z{A~n Wt)+ Cmvm(t) + Zr[Bm 9xm(t) + D,4yin(t)]} (17)

(A,B,C,D)m are the integrated coefficients of Fr (x,y) with the mode functions of in-plane
displacement u, v and rotation 0x and 0y in the domain of sensor coverage.
It is clear that modal sensor generally can not be constructed for plate because no orthogonality of
modes.

SENSOR ANALYSIS - NONLINEAR CASE

For von Karman type of Mindlin plate, the charge of the rth sensor layer will be

qr(t) = j' F, (x, y)Pr(X, y)(e31 c, +e32Ey + e36 y.,)dxdy (1 8)

in which, strain components of von Karman Mindlin plate are

6, ., +2W + Z0'',E = U. 12 Uy+V. .,WY(

For beam, Eq(I 8) simplifies to

q,(t)= 1Fr(x)e3i[U~x +lwx + z;0,j]dx (20)

It is clear that modal sensor generally can not be constructed for nonlinear plate because no
orthogonality of modes.

DIGITAL SIGNAL PROCESSING OF SENSOR

Much of the analysis done in modal testing is performed in the frequency domain, inside the analyzer.
The analyzer's task is to convert analog time-domain signals into digital frequency-domain
information compatible with digital computing and then to perform the required computations with
these signals. The method used to change an analog signal, q(t), into frequency-domain information is
the Fourier transform. For the charge of linear Mindlin plate sensor Eq( ), the Fourier transform of the
charge q(t) is denoted by Q(o) and is defined by

Q ((O)= r. q,(t)e-j,,tdt= jJ• FrPo[e,3 E,(x.ya°)+e 32Ey(x.y,0o)+e 36E.y(x.y, )]dxdy (21)

where (E,, E E,,) are the Fourier transform of in-plane strain (F,, cy, y.xy), respectively, and defined
by

Ex(x,y, o)= f(U.. + ZrO,.x)e-Jrtdt, Ey(x,y~o)= f(vy + zr0yy)-Jftdt:. (22)

Sy (xy,0) = (U y + V"' + Zro., + ZrGy.x )e-Jwtdt

RANDOM SIGNAL ANALYSIS OF SENSOR

The transducer used to measure both the input and output during a vibration test usually contains
noise, i.e., random components that make it difficult to analyze the measured data in a deterministic
fashion. In addition, performing a number of identical tests and averaging the results increases
confidence in a measured quantity. This is fairly common practice when measuring almost anything.

414



In fact, the stiffness of a signal structure is determined by multiple measurements, not just one,. Thus
it is important to consider the random signal q(t). Callaham and Baruh (1995) have given an attention
to this issue, but haven't given auto-correlation function and power spectral density for further random
analysis.
For random signal output qr(t), we can define its auto-correlation function as

Rqq(t)= jim qr(t)qr(t+ t)dt (23)

The power spectral density (PSD) of the random charge is the Fourier transform of the signal's auto-
correlation

Sqq (0) = ,'q-q-c)e-~dt. (24)

For a smart structure system, the signal q(t) will amplified and feedback to be input of the system, To
measure the noise in the signal, the coherence function is defined to be

,2 _Sxq(O3)l
2  (5

2 is, (25)
sxx(0))Sqq

which always lie between 0 and 1. The coherence is a measurement of the noise in the signal. If it is
zero, the measurement is of a pure noise; if the value of the coherence is 1, the signal x(t) and q(t) are
not contaminated with noise. In which, x(t) is the response of the structures. Sxq is the cross-spectral
density of the cross correction function of two signal x(t) and q(t).

FINITE ELEMENT FORMAT OF SENSOR EQAUTION

In practical simulation, finite element method will be dominant choice. The variation in each element
can be interpolated, for element e, as

V Nnode eV*

=O NF 
(26)

where Nnode is the number of node of element e, N, is the shape functions. Then the charge of the
element e will be

S"e,,0T[ 1 0
e 3  + 0 If~zO Nnode aUx +F Z9.1i

(t)flFPý e32 L0 -L u f JFPO e32 , O + dxdy (27)
~t ii eo aL ~ ~ x y e36} ITaN F N

In iso-parametric element space (, jEq(27) can be rewritten as

qF(t)= Enf~+ r; (28)
1= ! +' Jyi

which are the electric degree of freedom of an element e and where the interpolation function of the
charge of each element is I-T Ia0_ o.Jdd

(te 32 _1., FP0  -•-dd•d. (29)aNF J

le- e36i IN j

The feedback volfhge of the element will be

Ný P. 
6 ede ... Nnode [I.'. •z 0

dq!t) G e +Z,0xi (30)V, t)= G,. =- , Vi + 4..

which will be assembled the active damping matrix of the element included sensor. It is worth noting
that the element used to sensor should not necessary have to be same as the element used to
formulating host structure, although usually apply same element to both sensor and host structure.
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FINITE ELEMENT FORMULATION OF A PIZOELECTRIC SMART STRUCTURES

From the above discussion, piezoelectric actuator excited by piezoelectric sensor through a controller
actually plays as an active damper. In other words, the piezoelectric actuator has only contribution to
system's damping but not mass and stiffness. This remarkable understood is very helpful in the FEM
formulation of a smart structure. In the language of FEM, the construction of smart finite element
(SFE) can be done easily, because the SFE is the only ordinary element plus one additional electric

d.o.f., i.e., q'(t), or Ve(t). In the numerical implementation, the only user's subroutine to be written is
the active damping subroutine if using FEM package, i.e., ABAQUS.

The smart finite element is the element having "intelligent" at the element level. The smart finite
element is a new concept should be studied in the future.
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ABSTRACT

This paper deals with a numerical technique for the identification of damage on
laminated structures. The numerical model is based on a first order shear deformation
finite element. When the structure undergoes some kind of damage, its stiffness is
reduced, changing the dynamic response. By considering the sensitivities of the
orthogonality conditions of the mode shapes an algorithm is formulated, which
calculates a damage parameter in each finite element. The damage parameter is directly
related to the stiffness reduction of the damage finite element. Only the mechanical
properties of the layers of the undamaged plate and the natural frequencies and mode
shapes of the damage plate are required. The algorithm is applied to a laminated
rectangular plate and its efficiency is demonstrated through several damage simulations.

INTRODUCTION

Detection, location and characterisation of damage in structures via techniques that
examine changes in measured structural vibration response is a very important topic of
research, due to increasing demands for quality and reliability. Surveys on the technical
literature such as on Doebling et al [1], among others, show that in general the
numerical models used are not very efficient on the identification of damage. Further, it
can be verified that research work on damage identification of laminated composite
structures is still very rare. The field of application of composite materials has strongly
increased in the recent years, reaching several areas of application due to their
versatility. Thus, efficient new numerical models, associated to experimental measured
structural vibration response are required for the characterisation of damage on
composite structures.
Doebling et al [1] have carried out a literature survey relative to methods of
identification and health monitoring of structural and mechanical systems. These
identification methods can be classified at three levels:

1. Verification of the presence of damage in the structure;
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2. Localisation of damage;
3. Quantification of damage.

In the present work, a numerical model, which allows a level 3 characterisation is
proposed, with no need of the knowledge of the localisation of it. The model is based on

a first order shear deformation laminated finite element (Mota Soares et al [2]).

When the structure undergoes some kind of damage, the stiffness is reduced. This
reduction changes the dynamic response of the damaged structure. The proposed
numerical model does not need knowing previously the possible areas where damage
has occurred. It also does not require the eigenfrequencies and mode shapes of the

undamaged structure. It is shown that there are always enough equations to evaluate
directly the damage. In the eventuality of the existence of fewer equations than

unknowns, a technique of decomposition in singular values enables an iterative solution
of the problem.

The theoretical bases of the model are similar to that of the updated structural analytical
models by an inverse eigensensitivity method, formulated by Lin et al [3]. However, the
present model makes use of the sensibilities of the orthogonality conditions of the mode
shapes.

The model is applied to laminated rectangular plates, free in space and its efficiency and
stability on the prediction of damage on small areas, as well as on very spread and large
damaged zones is discussed. Two illustrative applications are here presented.

THEORY

For the descritized undamaged structure, the eigenvalue equations of motion can be

written as:
Kqj =2,2 Mqj for i=1,...,m (1)

where K and M, are the stiffness and mass matrixes, respectively, 2, is the Ath
eigenvalue, q, is the ith eigenvector and m is the computed number of modes.
If the structure undergoes some kind of damage, which reduces its stiffness, equation
(1) becomes:

K A, M=• 4M• for i=l,...,m (2)

Considering the orthogonality conditions:

i K~j =0 for i=l,...,m and j=i+l,...,m (3)

and the mass normalisation of the mode shapes, the following equation can be
established:

4iT k 4 = 6i2ý with K = for i~j (4)S•5i. = I for i ;ej
4.w 8 1 fori=j
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Since the damage stiffness matrix is given by K -K-K and on element e the

corresponding perturbed matrix is 6K, = gbK,, where 6be • [0, 1[ is the damage

parameter, yields:
N •60.N=0 for i:•j

K-IT K4jj, 8b,=T K~j -65.. with f6ij I for ij (5)

where N is the number of elements.
Equations (5) are written in the compacted form as:

S b = 8X (6)

where S(k, e) = 4T K,,4j, is the sensitivity matrix, 8b(e) = 8b is the vector of damage

parameters and 8X(k) = 4 K 4j- is the vector of modal parameters, with

k = 1,...,m(m + 1)/2 and e = 1,..., N.

Depending on the number of mode shapes and the number of elements, three situations
can occur:

1. The number of modes m is such that M = m(m + 1)/2 > N;
2. The number of modes m is such that M = m(m + 1)/2 = N;
3. The number of modes m is such that M = m(m + 1)/2 < N.

In the first situation we have an overdetermined set of linear equations that can be
solved by the Gauss-Jordan elimination method, since matrix S is not singular. The
second situation is a set of equal number of linear independent equations and unknowns
that can also be solved efficiently by the Gauss-Jordan elimination method. In the third
situation we have fewer equations M than unknowns N and there is not a unique
solution. The Gauss-Jordan elimination method fails to solve the set of equations. Using
the Single Value Decomposition (SVD) it is possible to find the N-M family of
solutions (Maia et al [4], Press et al [5]). The physically admissible solution is the one
with minimum damage 18be . This solution can be obtained by an iterative process. In
the first and subsequent iterations a set of M equations by N, unknowns is solved,
where N, is the number of elements included in the i-th iteration. After each iteration,
the elements with a damage parameter 8b, < 0 are eliminated. Once N - M or more
elements are eliminated, the damage parameter of the remaining elements can be
computed with great accuracy.

APPLICATIONS

The structure chosen for this study is a symmetric cross-ply plate [00, 900, 00 ] with
plane dimensions a = 0.2 m, b = 0.1 m and thickness h = 0.002 m. The layers have
equal thickness and the material properties of each layer are presented in Table 1.
The plate is discretized in 12x12 first order shear deformation plate elements (Mota
Soares et al [2]). Hence, there are 144 unknown damage parameters. Each element has 8
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nodes with 5 degrees of freedom. Due to the symmetry of the lay-up and the materials
of the layers, there are no in-plane displacements, resulting a total of 1443 degrees of
freedom. Damage is simulated by a reduction in the stiffness matrix Ke of the e-th
element.

Table 1: Mechanical properties of the layers

Layer 1 Layer 2 Layer 3

E1 [GPa] 100 50 100

E 2 [GPa] 10 10 10

G12 [GPa] 5 6 5

G13 [GPa] 5 6 5

G23 [GPa] 3 4 3

v12 0.3 0.25 0.3

p [kg/m 3] 1500 2000 1500

Multiple damage is simulated in elements 100, 120 and 144, with a stiffness reduction
of 0.20, 0.50 and 0.05, respectively. The results are presented in Table 2. In this
example, the calculations must include at least 10 modes in order to obtain a reliable
computation of damage of elements 100, 120 and 144. With 9 modes, the damage in
element 144 appears in adjacent element 132 (Figure 1). This is due to the large
difference in the damage parameter values, 0.50 and 0.05, in elements 120 and 144,
respectively. As the number of modes increases, the required number of iterations
decreases.

Table 2: Damage parameter 9b,
Element 100 120 144 No. of

No. of Modes, m Included
(No. of Equations, M) Actual Value 0.2000 0.5000 0.0500 Elements, N,

Iteration 1 0.1667 0.4011 -0.0066 144
9(45) Iteration 2 0.1966 0.4802 - 39

Iteration 3 0.2028 0.4956 - 21
Iteration 1 0.1729 0.4418 0.0030 144

10(55) Iteration 2 0.1998 0.4955 0.0378 78
Iteration 3 0.2000 0.5000 0.0500 43

12(78) Iteration 1 0.1923 0.4866 0.0155 144
Iteration 2 0.2000 0.5000 0.0500 76

16 (136) Iteration 1 0.2000 0.5000 0.0500 144
Iteration 2 0.2000 0.5000 0.0500 75

17 (153) Iteration 1 0.2000 0.5000 0.0500 144
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0.50 r Element 120
0.45-

0.40-

"d0.20 
Element 100(-C 0.30-

S0,25-

S0.15-
S0.10-

0• .05-

y -0.1o-0 Element 144

. Figure 1: First iteration with 9 modes

As can be seen in Figure 2, the results are highly precise when enough equations are
used.

0.50~ Element 120

0.451'

0.40-

0.35-
el nElement 100

4 0.30-
*• 0.25-

S0.20-
0,1t5-

~0.10-

.•(05-

Y -0.10Element 144

Figure 2: First iteration with 17 modes

In the second example, a 0.20 damage parameter is attributed to all elements. Figures 3a
and 3b show the results for 10 and 17 modes, respectively. The results exhibit a
maximum discrepancy between the actual values and the computed values inferior to
12.07% and 0.05% for 10 and 17 modes, respectively. It should be noted that this
example implies no iterative process, because all elements are damaged.
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0.23- 0.25-

a) 10 modes b) 17 modes

Figure 3: Results for a damage parameter of 0.20 in all elements

CONCLUSIONS
A numerical model is presented for the damage identification on laminated structures,

which does not need to know a priori the probable areas of damage. The model is
applied on the characterisation of damage of plates with cross-ply laminates. When
enough equations are used, the damage can be directly identified. However, when the
number of equations are not sufficient, the singular value decomposition (SVD)
technique can solve uniquely the problem. The two illustrative examples show the good
efficiency and stability of the numerical model on the identification of damage on small
areas, as well as on very spread and large damaged zones.
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INTRODUCTION

America's Cup is one of the most exciting and amazing events on marine yachting. Extremely highly
competitive and prestigious, every country in the world is quite proud of their ships challenging the last
winner. Because of this craving of victory all crews try to do their best when racing. Furthermore these
efforts ship's behavior, weight, resistance and speaking in general all parameters related to design are
increasing their influence on final results. Maximum effort and optimization is required to the designers
trying to get the best from the ship.
It is on such situation when the Spanish committee get in touch with University of Zaragoza demanding
a mathematical model capable of reproducing ship's behavior. This model should be able to simulate by
means of finite elements the structure of the "Rioja 95" the Spanish yacht.
The main task was to get an adequate finite elements model to perform different FEA in order to aim a
better and optimized structure. This model should be able to simulate and to predict the results of future
modifications thought to make in the ship. In order to ensure model's performance some extensometric
tests were carried out by means of 2D precision strain gauges and unidirectional strain gauges. These
unidirectional strain gauges were used to measure forces along all the ropes, and 2D precision strain
gauges were necessary to measure strains on 9 different points located all over the ship on strategic
places. These measured strains are to be compared to the values obtained by the FEM loaded with the
measured loads. This comparison should show how precise the model is and its ability to simulate actual
load cases.

'Ak

Figure 2.1 "Rioja 95" at Valencia harbour.
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MATHEMATICAL MODEL.

The structure of "Rioja 95" has been simulated by means of a finite element model which consists of
19483 nodes and 19393 elements.

The distribution of elements is as follows:

* 17363 elements S4R : element S4R is a linear 4 nodes linear element.

* 436 elements S3R. : element S3R is a linear 3 nodes linear element.

* 614 elements B31: linear bar element.

* 400 elements C3D8RH : it is 8 nodes volumetric element.

* 65 elements C3D6: 6 nodes wedge element.

The commercial code used to model and calculate the ship is ABAQUS. This code has been used for
preprocessing ,ABAQUS/Pre, calculating, and postprocessing the results. The structure has been mostly
meshed with 4 nodes shell elements, avoiding 3 nodes shell elements except where strictly necessary.
Beam elements have been utilised to simulate the beams and profiles not possible to simulate with shells
due to its geometric position or dimensions. Volumetric elements have been needed at any place where
du to a great thickness volumetric elements would be the best choice to ensure an actual behaviour. A
constant element dimension has been achieved ,but the mesh has been refined and optimised where
necessary. The following picture shows "Rioja 95" mesh.

Figiire 2.2 "Rioja95" finite elements mesh.
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BOUNDARY CONDITIONS AND LOAD CASES
Three different load cases have been considered in order to ensure ship's model behaviour under three
actual situations.

LOAD CASES I AND 2

Table 3.1 Load case 1

port runner 1 36000 N starboard vertical 0 N Stay 43400 N
starboard runner 1 31000 N port vertical 0 N Mast 12 Ton
port runner 2 26000 N port diagonal 208 N

starboard runner 2 22000 N starboard diagonal 946 N

1. Runners.
The value of these loads have been found by means of extensometric measurements. Unidirectional
strain gauges were placed on the ropes in order to measure the load carried by that ropes. Figure 3.4
shows the applied loads at the points were runners are attached to the cockpit.

2. Loads on verticals and diagonals.

Figure 3.1 shows that loads. These loads have been calculated by considering loads found on verticals
and diagonals with unidirectional strain gauges and the mast's compression load withstand. Due to this
compression, verticals and diagonals withstand some stress. As these elements support a load, previous
to the ship to be loaded, strain gauges do not measure the actual force supported by these elements but
the loaded force. Therefore, a finite element analysis should have been carried out to find the pre stress
withstand by verticals and diagonals. Once these stress values had been found, the actual force could be
aimed by adding these two stresses, the one found by extensometric gauges and the one found with the
performed F. E. A.

This F. E. A. have been carried out by modelling the mast and loading it. due to the great mast
displacements the analysis had been to be non linear geometric analysis. Henceforth all loads are
supposed to be corrected with the findings of this non linear F. E. A .Figures 3.1 and 3.2 shows the
withstand force along the axis of each rope and beam and vertical displacement, respectively.

Figure 23- 3igure3
323033 ,300=+o2 5

Figure3.02Fiure 0.
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3. Stay load.
Stay carries the greatest load at the ship. That load has been determined by extensometry, with ID strain
gauge. The load and its application point is shown in figure 3.2. This load point out to a quite high mast's
point.

4. Mast load.
Mast's load is the summary of all vertical loads applied to the ship, 20 Ton pre-compression load
enclosed.

5. Cylinder load.
A 21 KN. load is placed on deck's cylinders. Figure 3.4 shows all loads on the cockpit.

6. Boundary conditions.
Boundary conditions are shown in Figure 3.3 .Nodes corresponding to bedsteads are restrained on 2 and
3 directions. Keel lower nodes are restrained over 1,2, and 3 directions. Due to the bedsteads and
structure interaction, beams with different stiffness were placed in order to allow the structure to be
assented on the bedsteads.

Figure 3.5 Figure 3.6

Load Case 2 is exactly the same as Case I except that loads on the starboard have been decreased to
allow the model to show its torsion behaviour under non-symmetric load cases.

LOAD CASE 3. Tube's compression.

1. Tubes.

15 Ton distributed load, compressing the tubes, and the same force as the reaction of that force where
tubes are connected to the ship. :
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MATERIALS
Table 4.1 "Rioja 95" Materials

Materials/Properties Density Kg/m3  Ex MPa Ey MPa Ez MPa Vxy Gxy MPa
Carbon unidirectional 1500 110000 6800 0.33 4000
Carbon bi-directional 1350 51800 51800 0.03 4500
Honeycomb/A 41 0.72 1.32 2.1
Honeycomb/B 54 0.84 1.04 4.2
Titanium 4500 110000 10000 110000 0.3 32000
Steel 7800 210000 210000 210000 0.3 72000

RESULTS AND CONCLUSIONS

NUMERICAL RESULTS

Results are referred to the 2D strain gauges labelled from 1 to 9 , which are situated on the following
points :

R1 : Ford front hull floor 2D gauge R6: Aft front hull floor 2D gauge

R2: Ford back hull floor 2D gauge R7: Aft back hull floor 2D gauge

R3 : Mast bulkhead starboard strap 2D gauge R8 : Ford deck front 2D gauge

R4: Keel bulkhead starboard flying buttress 2D gauge R9: Ford deck back 2D gauge

R5 : Starboard middle hull 2D gauge

Measurements are shown in microstrains, and the test's day the offset varies from 0 to 30 microstrains.
Bearing in mind this offset, R5 got meaning just for Case 3, being negligible for load Case 1 and 2.

The following tables show test measurements compared to the Finite Element Analysis results on x (E 11)
and y (E22 ) directions.

400 E ABAQUS] 100_ ABAQUS

350 a *Test Test

300

250- 0.

200-.
150

100 -100

2 50

-50 -200--
-100-
-150250

Gauge number Gauge number

Chart 1 Load Case 1 Strains on E1I Chart 2 Load Case 1 Strains on E22
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Chart 5 Load Case 3 Strains on El 1 and E22

CONCLUSIONS

The result of the correlation is excellent, test measurements are quite similar to the numerical results.
This finite element model will allow to reduce considerably the scheduled test on trying different
approaches to new designs. Once a reliable model is achieved, as we have done, designers are able to
check every single idea they have by introducing the new concepts on the model, so that good
expectations of produced consequences are known before any change would be introduced in the actual
ship.
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INTRODUCTION

Development and justification of the numerical methods and approaches for the
analysis of transitional wave processes in the thin-walled structures represent the
problem that attracted an attention of many researchers over the past decades. Nev-
ertheless, the elaboration of the efficient and universal techniques, appropriate to the
field considered, is stil topical. Implementation of the explicit finite-difference meth-
ods takes the special place in this process. These methods remain quite competitive
ones inspite of the wide and growing development and utilization of the powerful
industrial finite-element software packages. The present paper discusses the method
developed for the dynamic analysis of the othotropic shells and plates. The approach
is based on the utilisation of quasilinear hyperbolic system of equations written in
terms of displacements. The influence of the equation members containing large pa-
rameters is taking into account by introducing the special splitting procedure which
provides the necessary level of accuracy. This procedure is applied at every step of
the numerical process with respect to the time variable. The approach being imple-
mented to the analysis of thin-walled composite structures provides the possibility
to expand the domain of the computational stability for the explicit finite-difference
technique.

BASIC EQUATIONS

The finite-difference schemes theory for the quasilinear second order systems of
equations, presented in the following form

9u U) u =F(t, x,u) (1)

has been developed quite well for the solutions of the gas dynamics problems,
magnetic hydro- dynamics problems, etc. In the system (1) U and F are the M-
dimensional vectors, and A is the M x M matrix. If the system (1) is a hyperbolic
one then the matrix A has M real eigenvalues Ai and there is a full sistem of the
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left eigenvectors-lines w, such that

A = Q-•A•, (2)

where A = diag~l[i \ is the diagonal matrix, matrix Q consists of the vector-lines WZ,
and fQ-1 is its inverse, i.e.,

where E is the unit M x M matrix.
The mixed-value problem can be formulated for the nonlinear second order sys-

tem of equations which describes the dynamic behaviour of the thin-walled elastic
shells of revolution on the basis of Timoshenko's model. The way of transformation
from this problem to the initial-boundary-value problem for the systems similar to
system (1) has been discussed in References [1, 2].

Consider the equations for modelling the dinamic axisymmetrical deformation of
the orthotropic cylindrical shells of the length L as shown in Figure 1.

Sw(t,x) __

q(t,x) / --

//

Figure 1. Orthotropic cylindrical shell

These equations can be presented in terms of unitless variables, using traditional
set of notations [3, 4]:

O2U 2 aU OW S- a1 • •O

02w 2 0 2 w 0b 0 Ou Ow•-- a - b2 - c2L- - d2 -- + e2 q(tX) ,
2o0 _ Y bOw

6t - a3 -ý aX e

where
21222 ba 2 b 12

c2 = V 27S, c3 = 12a 4 , d2 = - e2
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a -_ 2 G13(1 /V1t2) R _R

E1  ' h'T' h-
iv f chX=-r, u=p• W=-p t=--Y,

q L (1 - v v2) c2 = E1

Elh ' p(1 - vv2)"

After introduction of a new column-vector of unknown variables in the form

au _ w 9oW Nu 8w ow T
U~~~ V O at , -Ft , Yx- , VX_ , -X I U I W'

the system (3) can be converted into the form (1), where the hyperbolic matrix A
is written as

0 0 0 --a2 0 0 0 0 00 0 0 0 -al 0 0 0 0
0 0 0 0 0 -a• 0 0 0

-1 0 0 0 0 0 0 0 0
A= 0 -1 0 0 0 0 000 (4)

0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0

and the right-hand side vector components are given by

F1 = bl-U,

F2 = b2U6 - c 2U4 - d2U8 + e2 q(t, x),

F3 = -b 3U5 - c3U9; (5)

F4 = F5 =F 6 =0;

F7 = U1 , F8 = U2 , F9 = U3 .

All of the eigenvalues of the matrix (4) may be found from the equation

detlIA - AEII = 0

The corresponding real-value diagonal matrix may be written in the form

A = diagI10, 0,0,al, -a, , a2 -a 2 a3 ,-a 3ll.

The transformation matrix Q may be determined from the following equation

w'A = Ai Lw

Using the equation DO` = E we can find the corresponding inverse matrix - 1.

Finally, the hyperbolic matrix A can be presented in the form of decomposition (2).
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IMPLEMENTATION OF GRID-CHARACTERISTIC METHOD

The various explicit finite-difference shemes can be used in order to solve the dy-
namic problem represented by the system of equations (1) with the coefficients (4)
and right-hand side vector (5). In case of the constant step size of integrating with
respect to the time variable At and coordinate variable Ax the grid-characteristic
scheme can be expressed as follows

Uý'+'A =(un+A F'+1 t -_)
2AxU•+1 = U•+AtF• 2Ax(U 1 -(6

(6)
At

2Ax (n-'JAI) (ur+ 1 - 2U7 + Ut 1 ).

According to Reference [5] this scheme demonstrates good computational charac-
teristics. Some components of the right-hand side vector of the system (1) contain
large parameters. This fact imposes quite severe constraints onto the length of the
step of integrating with respect to the time variable in comparison with the well
known Courant-Friedrics-Lewy condition, normally used for explicit finite difference
schemes. The approach implemented in this work eliminates completely this negative
influence of large parameter for considered problem. At first stage of this process we
use the formulas (6) at every step in time for the homogeneous system of equations
obtained from (1). The term At F• in the equations (6) is substituted with the term
representing external load At e2 qrL for the second equation of the system. As a re-
sult we obtain the intermediate solution in the form of vector V. For the next time
interval the unknown variables are presented in the form of the exact closed-form
solution of the following system of odinary differential equations

(W) F(V1 ). (7)

The components of the right hand side vector of this system have the form (5), where
F2 = b2 U6 - c2U4 - d2US. Finally, for each point i of the space coordinate grid we
have

Uj'+1 = V1 + At blV5 ,

eU+1 = V2 cos(v/2At) - (V8 - 6) sin(-,/d2At),

U+1 V3 COS cos(VfAt) - (V9 - q) sin(VAt),

U7+=V4 , U+1=V5 , UV+-=V6,
Un+1= V7 +AtV± + I (At)2b1V,

U8+1 = (V8 - ý) cos(vd2At) + V2 sin(V rAt) + e,

u$÷1 = (V9 - 7) cos(V/cAt) - V3 sin(VcAt) + q,

where
-c 2V2 + b2V5 _ b3V5

d2 C3
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Using the equations analogous to (7) the contribution of the external load may be
taken into acount in the similar way.

NUMERICAL RESULTS

The dynamic response of the orthotropic cylindrical shell, considered in Reference
[3] (see Fig. 1), has been investigated on the basis of the discussed above method. The
cylindrical shell is subjected to the axisymmetrical load q = 1 - t/T.The duration
of the load application is changed within the following time interval 0 < t < T.
Zero initial conditions are assumed. The ends of the shell are rigidly clamped, and
the appropriate boundary conditions at x = 0, and x = L have been used. In order
to simplify solution the boundary condition at x = L has been substituted with
the symmetry condition at x = 0.5L. The geometry parameters of the shell were
taken as S = 50 and y = 0.5. The duration of the loading was equal to T = 0.01.
The space coordinate domain of the analysis has been broken into 100 intervals.
Computations have been produced for the Courant numbers closed to 1.0. Some
results of the calculations are shown in Figure 2.

w

0.4

0.2 "- - --

-0.2 _ _

-0.4

0.0 0.04 0.08 0.12 0.16 t

Figure 2. Dynamic deflection of the shell

The change in time of the deflection at the central cross-section of the shell
is presented by solid line. The chain line corresponds to the results obtained in
Reference [3]. In the close vicinity of the boundary cross-section X = 0 the drastic
changes of the basic parameters of the solution took place. In order to eliminate this
effect the special averaging procedures have been introduced within the segment
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of 1/20 of the shell length. The averaging has been produced using the approach
described in [6]. Implementation of this procedure did not effect the solution at
the central part of the shell in any significant way (see the dashed line in Figure
2.) The similar averaging technique can be applied for all of the grid nodes of the
space coordinate variable x. Such an averaging leads to the overall damping of the
nonphysical oscillations and makes it possible to use the scheme (6) for the analysis.
However, in this case the solution fades too fast in time and it does not reflect
properly the transitional dynamic processes considered in this paper.

CONCLUSIONS

The method discussed in this paper provides the stable numerical process for
wide range of the values of parameters. Numerical analysis of the dynamic response
of the cylindrical orthotropic shell demonstrates high efficiency and computational
stability of the algorithm. The compact structure of the suggested method gives
the possibility to use this technique as an analytical tool for structural design and
optimisation.
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INTRODUCTION

Influence functions for different stress and displacement discontinuity elements are
demonstrated in [1,2]. The functions for displacement discontinuity elements allow a
new formulation of the Displacement Discontinuity Method (DDM) which was
presented at the ICCST'1 [3] for infinite anisotropic media and SARES'97 [4] for a
finite domain with a crack. Unlike the usual DDM boundary approximation, we use
coinciding displacement discontinuity boundary elements to model straight slits/cracks.
Boundary conditions are satisfied at several nodal points. The nodes have the same
positions for different elements. If the number of the nodes is equal to n then Constant,
Linear, Parabolic, 3rd-order, ... , (n-2)-order elements, together with Left and Right Root
ones, are used to solve the problem. Similar technique is employed to approximate outer
boundary by stress discontinuity elements [4]. Although the above technique allows an
efficient solution of the problem, it does not permit us to get accurate calculation results
at points distant from higher order boundary elements.

NUMERICAL EXAMPLE

As an example, consider 10-order stress discontinuity element AB which is situated on
the axis Ox. Element centre coincides with the centre 0 of the coordinate system Oxy.
Because A(-1,0) and B(1,0), the length of the element equals two dimensionless units
(LAB= 2 ). A load gy = [0.5(x+l)]10 is applied on the element (here x is the abscissa of the
point on the element). We use influence functions for k-order stress discontinuity
elements presented in the Table to model this kind of loading. Stress tensor components
ay at points on the line x = 0.8 calculated using the functions are shown in Figure 1.
Theoretically, such kind of loading should lead to the stress tensor components

IlY clY Ij =2 \11=2

0.8 1 1 2t-I=-0.004- I0.6- 10 31 =2 ,
0.4 -0.006 m=2 o 00

0.2- -0.008 0 0

-0.2 v -0.010 (b) m=l
-0002.2

-0.4 
-0.012- b

_____ ____ ____ ____M=6-0 .6 - . . . . , . . . . -0 .0 14 i . . .-. . .

0.0 20.0 40.0 60.0 80.0 100.0 Y 2.0 3.'0. 4.0 5.0 6.0 Y

Figure 1. Stresses ay at points on the line Figure 2: Stresses ay at points on the line
x = 0.8. x = 0.8. Analytical solution (curve b) and

Taylor series approximations (separate
points; entry numbers are m=l, m=2, and
m=6, respectively).

435



Table. Influence functions and their Taylor series approximations
Polynomially distributed stress discontinuities

m ( t \k

g(t)= gkL ) k 9gk{gxAgyk,g k} =const............. I ...d u ....i .................. I .................. ......... + + + + + • + .................................
Cone~x.-?Miiid iiiiions Tyo ieapoiain

jm Aln Qj + ln(co Bj -o) Aj)
-j = IHnAj +lnQ 1 ±j + -Ij= Ajk •k=k+l k+l

k=O l k=O
+ ln(o Bj - Co Aj) 0

- lsk+.[ln Aj .01

gk~~ ..... E-)

E>Z Aj>
10 mj ( 1 k 1 Q B ~~A -

k+1~

k-order stress discontinuity element
g

9k g(t) = gk kLA k
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A P B.C &i i~ • v ~i i • ...........i I... T6 ...6 . ................................................ ...........? I" ........ ..~ i•.... I .......... I ..........................
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Ajk IlnA l H+Ajkl + +ln(cIBJkl-A)
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k k+l- + l(l1+ k)"-j

k+lJ A 0k 0
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x jlnAj + +-_ J +
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Reverse L-root stress discontinuity element
g

LB
, •1g(t)= gir• Ft'
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Polynomially distributed displacement discontinuities

D(t)= IDk t , D Dk Dk ,Dik,,Dzk}=const
k=O (LAB)C ~i~fii~l• :V~i~iigff fiiiia'fiiii' .............................. ............. T lSi"g i • "iijiii iiif5 ' .............. .....

-I LAB Z(B7 1j+Co) 1]R LAB

3 (Bj - 0Aj =) Bj - CO Aj c.=4,ri,z

k=O - nJl= - 'Dak Ok

E~Qj.- lInAj - Y, Dock I + k o+

Jkl~l~

LAB 2LAB 2 L(B i 1 1

Ej = j _(up + Aj -I j-ll - - j + .~ x
(CO Bj ( Aj ) a=Bj - Aj a4T~

1=

Dk

T=+,r,) )2 I o.+

k2

k-order displacement discont-muity element

D~
Dk D~)=Dk (ZAB

ALAB t Dk =-DkDf%, Dqk, Dzk}=const

0 B

A P~ B

) 3Bj(COAj +QBj jj

kl1

S=ya47,,,z
LABLAB 2 [xln j

+( I +,k - k_

x ~(B~xj1j+Cayj)Dak

438



L-root displacement discontinuity element
D

D, D(t)D= Oir

ALAB t Dir = Dir {Dyjr', DIr, Dzir } = const
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decreasing to infinitesimal quantities at points distant from the element. We do observe
this if the distances from points under consideration to the element are in the range of 20
-70 dimensionless units (ref. Figure 1). But afterwards, the calculations produce wrong
results.

The analysis of the calculation technique has shown that the loss of the accuracy is
dealing with specific types of the influence functions for higher order elements. As an
example, consider complex valued function Ij for k-order stress discontinuity element
(ref. the Table). We can see, that the function contains following expression:

k-nnA1 + "lk and -- 1k
T=nýInj + I- .+-- + and iim -__00oT = lim n -_+00 +E+ =0i =1 Il=j1 

kl
However, because real computer produces very small, but still existing numerical error

9, calculating value j it is easy to show that limn._ +0 = limn_+ 3 k-2 = j
Thus, computer error results in numerical instability shown in Figure 1. We can avoid
this problem if we use Taylor series approximations for the functions instead of the
functions themselves when we conduct calculations at the distant points. For scheme of
calculations presented in [4], a set of influence functions and their Taylor series
approximations is shown in the Table. In the code, we do not use approximations to
calculate stress functions for all root elements, constant stress and linear displacement
discontinuity elements. Both stress and displacement functions are not approximated for
constant displacement discontinuity element. In Figure 2, we can see that even keeping
a small number of entries in the series allows a good transformation of the analytical
solution into approximate one.

CONCLUSIONS

To avoid numerical instability of calculations of influence functions for higher order
stress and displacement discontinuity boundary elements, it is necessary to use Taylor
series approximations for the functions instead of the functions themselves if points
under consideration are far enough from the elements.
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FINITE ELEMENT FOR THE ANALYSIS OF

VIBRATIONS OF LAMINATED COMPOSITE PLATES

AND SOLID BODIES
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1.Introduction

To the analysis of achievement in development of the theories of account of lam-
inated designs the reviews [1-7] are devoted. Exists two approaches of account of
considered designs. This application of the three-dimensional theory of elasticity
and item of information problems to two-dimensional.

The widest application in reduction of a three-dimensional problem to two-dimensional
was found by a method of hypothesises. In a method of hypothesises there are two
directions. It is the discrete-structural approach [8] and continuous-structural ap-
proach [4,9-12]. In the discrete-structural approach the order of permitting system
of the equations depends on quantity of layers.

In the given work in problems of vibrations of laminated plates and solid bodies
two above-stated directions are applied.

2.Problem Statement and Kinematic Model

In rectangular cartesian system of coordinates a laminated design is considered
Surfaces of section of layers parallel to obverse surfaces and surface Oxy. The layers
are made from of a orthotropic material. Strains and the stresses are connected by
the known equations: {e} = [A]{fo}, {c} = [C]{e}, {e} = {el, e22, e33, 2e 23 , 2e1 3, 2e1 2}T,
foU} =T

Summation on alphabetic indexes is made. The point at a level of indexes designates
operation of differentiation. In matrix expressions matrix operations, and then
summation on alphabetic indexes are in the beginning carried out.

Is entered approximation of displacements [13]

Ui = Uilfil + Wk,iýOk; (1)

U3 =Wkfgk (i,j=l,2;l=l,2;k=l,...,5), (2)

where Uil(x, y, t), Ui2(x, y, t) are displacements in tangential directions on obverse

surfaces of a design; Wl(x, y, t), W2(x, y, t) are displacements in normal directions
on obverse surfaces of a design; W3(x, y, t), W4(x, y, t) are the unknown functions of
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the reference surface (the functions of shear); W.5(x, y, t) are the unknown functions
of the reference surface (the functions of drafting). The distribution functions are
defined by

z
f dz f A33dZ
'1-a' ffl 2; P2- aO #~i 2;

f dz f A33dz
a0  a

an
z ~f (Ai 3 Cii + A 23C21)fi 2dz

,83 J (A13C11 + A 23C21 )fi 2dz + ao Jn A33dz;
ao f A33dz ao

f (A13C1 2 + A 23C22)fi 2dzz

= 4 J (A13C12 + A23 C22)fu~dz + ao an J A33dz;
ao f A33dz ao

ao

f HA33dz f F12 dz

an H an
f HA33dz f F12dz

a0 a0

an
z ~f (C 12 +G 12 )fi 2 d--z

F12 = J(ci2 + G 2 )fi 2 dZ + a an J G12dZ;
a0  f G12dZ a

ao

an

z ~f Ciif1 2dz
= - Ciif 12dZ + a~an J G12dz;

ao f Gj 2dZ a,
a0

an
zff3k dz

(P'ik ]8kdz+ an ]dz (k =1,2, 5);
00 f dZ ao
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f (Fi1 /Gi 3 - / 3)dZ
Wpi3 J(Fi1 /G 1 3 - /33)dz _ ao an / dz;

ao f dz tao
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an

(F2 Gz f3)d - F~ i J 4 dz.

ao ~f dz a
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3.Variational Principle

We shall receive the equation of balance of a finite element on the basis of the
Gamilton variational principle.

8J(R -T-A)dt=O. (3)
t

Here
R =1 Ju}T[d]T [D](d]{fu} dv, (4)

V

where { u} = {U1 , U2 , U3 }T; nonzero value the members of a matrix [d] follow-
ing: d(1,1) = 9/Ox,d(2,2) = a/,9y,d(3,3) = a/az,d(4,1) = o/ay,d(5,2) =
,9/ax, d(6, 1) = 9/Oz, d(7, 3) = 9/ax, d(8, 2) = O/Oz, d(9, 2) = 9/ay; nonzero value
the members of a symmetric matrix [D] : D(1,1) = C11,D(1,2) = C1 2, D(1,3) =
C 13 , D(2,2) = C 22, D(2,3) = C23 , D(3,3) = C33 , D(4,4) = G 12 , D(4,5) = G12, D(5,5) =

G12, D(6, 6) = G13, D(6, 7) = G13 , D(7, 7) = G13, D(8, 8) = G23, D(8, 9) = G23 , D(9, 9) =
G 2 3 •

T I IJJ Iu}T[dt]T [Dt][dt]{ujdv, (5)
V

where nonzero value the members of a matrix [dt] : dt(1, 1) = 0/Ot, dt(2,2) =
a/Ot, dt(3, 3) = a/at; where nonzero value the members of a matrix [Dt] : Dt(l, 1) =
p, Dt(2,2) = p, D0(3,3) = p;

A IJ JU}T jq}ds, (6)
S

where {q} = {qj, q2, q3 }T-external load vector.

We substitute the equations for displacements (1) and (2) in the equations (4), (5)
and (6).

R JJ J {ti}T[df]T[p]T[d]T[DI[d][F][df]{w}dv; (7)
V

T I f J -~}T [df ]T[F]T [dt ]T [Dt] [dt] [F] [df] {w} dv; (8)
V

A = JfV}T [df ]T[F]T jq}ds, (9)
S

where {w} = {U11,{U 2 z, Wk}T; nonzero value the members of a matrix [df]
df(1,1) = 1,df(2,2) = 1,df(3,3) = 1,Df(4,3) = a/ax,df(5,3) = a/ay; nonzero
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value the members of a matrix [F]: F(1, 1) = f1l, F(1,4) = 01k, F(2,2) = f 2j, F(2,5) =

'P2k, F(3, 3) = /lk, F(4, 3) = _k; In matrixes [F] and {ti5} the indexes 1, k are replaced
on Indexes 1, k(l = 1, ... , 6; k = 1, ... ,3).

We set approximation in the plan of unknown functions Uil known polynomial
functions of the first degree,Wk polynomial functions of the fourth degree [11]. We
shall present such approximation in the matrix form:

{w} = [NJ{P}, (10)

where [N] are matrix polynomial functions;
{P} = {vUz(xi, yi), Uvg(x 2 , Y2), U1i(X 3, y3), Uv1(X 4 , y4), U21(x1, yI), U21(X2 , Y2),v2,(X3, Y3), v21(X4, Y4), wk(Xl, YI), o9wk(Xl, Yl)/oY, -owk(XI, Yi)/Ox,
Wk(X2, Y2), Wk(x2, y2)/Oy, -OWk(X 2 , Y2)/Ox, Wk(x3, Y3), OWk(X3, y3)/ay,
-aWk(x3, y 3 )/Ox, Wk(X4 ,,Y)), 9,Wk(X 4,Y4)/y,-Wk(X4, y 4)/IX}, Xm, ym(m = 1, ... , 4)
are coordinate of units of rectangular finite element.

4.Finite Element

Let us substitute the equation (10) in the equation (7), (8), (9). We vary and receive
the equations of balance of a finite element

(Jj IJI[N]T[df]IT[F]jT[d]T [D][d][F][df][N]{P}dv -
t V

If JJ [N]T [dfl]T[_P]T[dtlT [Dt] [d,] [F] [df] [N] { P} dv) dt=
V

I j(I I[N]T[df ]T[F]T fq}ds)dt. (11)
t S

5.Numerical Results and Conclusion

We consider a four-layer (0/90/0/90) square solid body. The lamina properties are
assummed to be

,7(')Il) )= 40; E(1 ) E3(1); 1 = 0,25; (1) = 0 25; v1) = 0, 25; G(12,/1)--

0, 6; G(ZI/E•-) = 0, 6; G('1)/E( 1 ) = 0, 5;. Thickness of layers identical. The relation
of length by height: 1/h = 5. On a quarter of a plate a uniform grid is put finite
elements (5 * 5). The boundary conditions on the middle plane are the following:
U3 (x, 0,z) = 0; U3 (0,y,z) -: 0; U2 (a/2, y,z) = 0; U1(x,a/2, z) = 0.

We consider the following variants of a design:
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1. Rigid contact of layers. The bottom surface free (V1).

2. Rigid contact of layers. The bottom surface is fixed (V2).

3. Slippery contact of layers. The bottom surface free (V3).

4. Slippery contact of layers. The bottom surface is fixed (V4).

Is applied two variants of account:

1. The design on thickness is simulated by one finite element (Ml). In this case
the slippery contact is simulated by a thin layer with the following characteristics:

, /1)_(; E(P() (pr) h(p)
-EP' E ( - E(1 (P) E1 - v~21 - 01 ,25; (r

-3 3IU 7i 21 =i Vi -': ) 31(pr) 0; G((p) - 0,6E(')/1000; G(pr) = G(T)/1000; G(T) = G~pr)/1000; h(P)-•32 " 12 - -(3 1 G )1 000 '23 12-

h/100.

2. Each layer of a design is broken on thickness on five finite elements (M2).

Results of account (w(ph2/1E(1))1/2) are given in table

Source V1 V2 V3 V4
Ml 0,4189 1,5706 0,1801 1,5952
M2 0,4242 1,6645 0,1751 1,6337

The account of the first variant (VI) design on other models gives the following
results: 0,42719 [14] and 0,44694 [4].

Finite element intended for the decision of problems of vibration of laminated plates
and bodies is constructed. Rigid and slippery contact of layers is allowed. The
considered example demonstrates sufficient accuracy of an offered finite element.

References

[1] Grigoluk E.I., Kogan F.A. A Modern Condition of the Theory Laminated Shells.,
J. Soviet applied mechanics, Vol.6, No.8, 1972, pp. 3-17 (in Russian).

[2] Grigorenko Ya.M., Vasilenko A.T. Methods of Account of Shells. The Theory of
Account of Shells Variable Rigidity. -Kiev, Naukova dumka, Vol.4, 1981, 544 p. (in
Russian).

[3] Dudchenko A.A., Lurie S.A. and Obrascov I.F. Multilayered anisotropic plates
and shells. Results of the science and engineering. Mechanics of a solid body.-
Moscow, 1988, vol.15, pp. 3-6 8 (in Russian).

[4] Reddy J.N., Khdeir A.A. Application of the Various Theories of plates to Buck-
ling and Vibrations Laminated Composite Plates, AIAA Journal, Vol.12, No.12,
1989, pp. 1 80 8 -1 8 1 7 .

[5] Kapania R.K., Raciti S. Recent Advances in the Analysis of Laminated Beams

445



and Plates, Part I, Sher Effects and Buckling, AIAA Journal, Vol.27, No.7, 1989,
pp.923-934.

[6] Kapania R.K., Raciti S. Recent Advances in the Analysis of Laminated Beams
and Plates, Part II, Vibrations and Wave Propagation, AIAA Journal, Vol.27, No.7,
1989, pp.9 3 5 -94 6 .

[7] Grigorenko Ya.M., Gulyaev V.I. Nonlinear Problems of the Theory of Shells and
Methods of their Solution (Review), J. Soviet applied mechanics, Vol.27, No.10,
1991, pp. 3-2 3 (in Russian).

[8] Bolotin V.V., Novichkov Yu.N. Mechanics of Laminated Designs. -Moscow,
Mechanical Engineering, 1980, 372p. (in Russian).

[9] Ambartsumian S.A. Theory of Anisotropic Plates. J.E.Ashton, Technomic Pub-
lication Company, Stamford, CT, 1970.

[10] Rasskasov, A.O., Sokolovskaya I.I. and Shul'ga N.A. The Theory and Accont
of Laminated Ortotropic Plates and Shells.-Kiev, Hight School, 1986, 191p. (in
Russian).

[11] Piskunov V.G., Verizenko V.E., Prisjaznuk V.K., Sipetov V.S. and Karpilovski
V.S. Calculation of Inhomogeneous Shells and Plates by Finite Element Methods.-
Kiev, Hight School, 1987, 200p. (in Russian).

[12] Piscunov V.G., Verijenko V.E. and Adali S. Transverse Shear and Normal De-
formation Higer-Order Theory for the Solution of Dynamic Problems of Laminated
Plates and Shells. Int. J. Solids Structures, Vol.31, No.24, pp. 33 4 5 -33 7 4 .

[13] Marchuk A.V. Generation of Sampled- and Continuously-Structural Approaches
to Formation of Mathematical Model of Calculation of Laminated Plates and Solid
Masses, Mechanics of Composite Materials, Vol.32, No.3, 1996, pp. 3 7 7-3 8 7 (in Rus-
sian).

[14] Noor A.K. Free Vibrations of Multilayered Composite Plates, AIAA Journal,
Vo1.11, 1973, pp. 1038-1039.

446



SOFTWARE FOR THE SIMULATION AND THE CONTROL OF THE
FILAMENT WINDING OF ELLIPSOIDAL STRUCTURES
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INTRODUCTION

The software we present is destined for the simulation of winding ellipsoidal
structures and to prepare data and programmes for the control of the filament winding
machine by a numerical control unit. Such strutures present many applications:

- basket for field (in Africa)
- blades
- canals

The advantages of the the filament winding process to manufacture vessels are well

known [1]:

- large structures can be built;

- cost can be reduced with high productivity;

- high quality can be achieved, due to the use of continuous fibres.

Our technique is limited to thermosetting resins [2], the glass fibres are impregnated

during the winding process, before being wound on the mandrel. The system we use is

composed of:

- a filament winding machine;

- a micro-computer with a special sofware;

- a numerical control unit.

The numerical control unit is an industrial modular unit, able to control up to eight

axes. It uses its own low-level programming language [3]. It can be programmed

directly from its keyboard or can be loaded with externally prepared data and

programmes through a RS-232 interface. For complex sequences, direct
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programmation reveals too complicated and external preparation of control

programmes necessary.

PRESENTATION OF THE SOFTWARE

The purpose is to simulate the winding process at a micro-computer screen, and to

prepare data and programmes destined for the numerical control unit, to control the

filament winding machine. The main movements are - the rotation of the mandrel

aroundits longitudinal axis (ox), - the longitudinal translation of the feed-eye XE, - the

transversal transversal of the feed-eye YE, the vertical translations of the feed-eye ZE,

and the rotation of the feed-eye around its transversal axis of movement (D. The

synchronisation of these five movements allows the winding process to take place.

Analysis

A mathematical analysis has been done in order to determine the rotation of the

mandrel P30 and the feed-eye location E [4]. M is the deposit point, it is the point at

which the fibre takes off the mandrel (Fig. 1).

TV/

E

Figure 1: Defining the geometrical parameters

Where: - the tangent unit vector to the meridian at point M, T. - the tangent unit
vector to the parallel at point M, T', -the tangent vector to the geodesic at point M, T,
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- the tangent unit vector to the normal at point M, PO - the rotation of the mandrel

around its longitudinal axis, E - the location of the feed-eye, y - the winding angle.

The location of the feed-eye, for a constant cross section, is defined by its coordinates E

(XE, Y , ZE),such as:

XE =X-XCOSJ
X u°Hn) sinysiny o~

Y = rU+ sinOf - Hu COS
H Hu(1)

ZE, = (U+ "Usin y + X o s in Od

Where :X-a constant distance from E to M, Od-the angle between (o, x, z) and (o, x, zj), u-a

parameter depending on the cross section, H-a parameter depending on the cross section. We

have (y/b)2 + (z/c) 2  1, and:

( 11 odCOSod (2)Uo = 2 b 2 sn a~

u ]cos2 0 d sin2 0 d (3)

c b2

H COS2 2 0d (4)
CH 4  + 4

The rotation of the feed-eye aroundits transversal axis of movement is given by the

angle D such as :

tgcD cos Y (5)tgb=_sino O U )sin
, 2 + U0 COS, 1) H

Programming

The software developed on an IBMIPC micro-computer with graphical features that

control the following parameters:

- the mandrel rotation PO0;
- the longitudinal movement of the feed-eye XE;

- the transversal movement of the feed-eye YE;
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-the vertical movement of the feed-eye ZE;
- the rotation of the feed-eye around its transversal axis (D

The software is written in Turbo-Pascal language. The programme generates a file in
which the necessary parameters to the numerical control unit are stored. When

operating the machine, this file has to be loaded in the control unit through the RS-232

interface.

Simulation

The simulation starts by showing the geometry of the mandrel in a three dimensionnal

window on the screen. The winding process is displayed cycle by cycle up to full

coating of the mandrel (Fig. 2).

" Figure 2-a: Winding data
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Nbr= 36

Figure 2-b The structure after five cycles wound

Nbr

Figure 2-c Complete simulation of the process
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CONCLUSION

In this paper, we have presented a software for simulation and control of a filament
winding system, developed for manufacturing ellipsoidal vessels in thermosetting

fibre composites. The software controls five parameters used for the placement of the

fibre on the mandrel. A graphical representation of the fibre placement provides the
user with a convenient simulation of the whole system. The software generates data

subsequently loaded in a numerical control unit, which controls the machine.
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INTRODUCTION

Filament winding composite structures fabrication requires welding while winding for

thermoplastics resins, or heating in an oven after the winding process for

thermosetting resins. Welding while winding can be obtained using a heating mandrel,

or a heating head moving after the fibre deposit point on the mandrel. The last method

poses a problem for the welding speed and the synchronization of the mandrel, the

feed-eye and the heating head movements [1]. If the winding machine is

simultaneously controlled in both speed and displacement, the welding speed

regulating is easy. If controlling of the machine is limited to block by block

displacements, the movements of motorized axes, although they are synchronized,

remain random in their way of varying from one block to another ; that is the case of

the numerical control unit "CYBER 3000", the one we use.

The filament winding machine is a prototype specially built for research purpose. It

has been designed as a 5-axis machine [2] with a mandrel and a heating head

associated to the feed-eye. The prepregs used are preimpregnated of thermoplastic

resins. Quick-welding is the best if the resin melting state is reached in both the

prepreg roving coming from the feed-eye and the underlining layer on the mandrel

furthermore the welding pressure must be sufficient.
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THE HEATING SYSTEM

It is an ultrasound heating head. The mandrel, in metallic alloy, has a circular cross-

section. The maximal temperature generated by the ultrasound heating head is about

4000 C. When operating, the movements of components are associated such as the
contacting point between the heating head and the structure wound is the deposit point

on the mandrel. It appears a fall of temperature due to the contacting point speed ; that

fall is accentuated with the increasing deposit speed. Knowing the total fibre length L
wound during one cycle and the allocated time T, we can determine the medium speed

to introduce in

the numerical control unit Voy.

Determination of the fibre length

The mandrels present variation of cross-section, which makes difficult the

determination of the fibre length; only that variation of section will be analysed here

(Fig. 1).

* Figure 1 :Revolution surface
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Where : P-the deposit point, G-geodesic line, T-the tangent unit vector to the meridian

at point P, b -the tangent unit vector to the parallel at point P, T, -tangent vector to the

geodesic line at point P, R0-the mandrel radius at point P, (p -the winding angle with

The element of fibre length is given by:

Ro x 2 + d (1)

Where : x'-the derivative of x compared with R. -, x' = dx / dRo. Integrating dL for one
cycle, Rf -the mandrel radius at the end closure of the dome. we will have the total

length of the fibre L.

Determination of the welding medium speed:

L (2)Vmoy T-

Where: VMoy., L and T are defined above.

WELDING PRESSURE

The welding pressure allows to improve machanical characteristics of the structure

built, it is obtained by tightening the fiber and varies from 0.1 to 1 MPa to make

removal easier from the mandrel. In helical winding the winding angle Y varies from

20 to 80 degres ; the welding pressure is given by:

p Tsin2 W (3)

Rol

Where : T-the fibre tension, y-the winding angle is defined by the tangent vector to

the meridian and the roving direction at point M (the deposit point),R0--the mandrel

radius at point M, 1-the roving width (Fig. 2).
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•T

Figure 2: A mandrel with the roving under tension

In circonferencial winding, where y z 900, we have the pressure formulated by J. L.

Tisne [3]
p= T (4)

RolI

CONCLUSION

Welding composite revolution structures while winding poses the problem of

continuity of the weld due to the discontinuity of the deposit point movement in block

by bloc displacement. However, that problem can be solved by limiting the maximal

welding speed. The structure obtained must be heated in an oven after having been

covered by a fine layer of resin in solution to eliminate porosity. The welding speed

using ultrasound heating system remain low, about few meters per minute.
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INTRODUCTION

It is known that composite parts with considerable geometric complexity and close dimen-

sional tolerances can be fabricated with high fiber volume, low void content and low scrap,

and a dependable fiber architecture by using resin transfer molding (RTM) process[I-4].

The RTM fabrication also allows parts to be manufactured with fiber volume ratios compa-

rable to those achievable with traditional autoclave processing techniques. The present

work addresses a technique utilized in obtaining an integrally stiffened composite flat panel

using sixteen plies of W5-322 (Fiberite, Inc.,) plain weave carbon fabric with a high tem-

perature PR-500 (3M Co.,) epoxy. matrix. To maintain the shape of the stiffener, a Ro-

hacell® rigid foam core is inserted in the mold prior to the RTM process takes place. The

composite component fabrication incorporates a complex geometric configuration starting

with the mold design followed by RTM processing. The design of the part was based on

an assumed generic stiffened panel geometry. The part was sized to be compatible with

existing RTM equipment.

APPROACH

The PR-500 epoxy resin is an advanced epoxy packaged as a one component system espe-

cially formulated for RTM. It is compatible with our Graco Heated RTM Supply Pump

(Figure 1). Since the matrix is a thick paste at room temperature, the pumping and plumb-

ing system must be controlled at an elevated temperature. A mold design (not shown) was

selected that follows the contour of the finished stiffened panel (Figure 2). The mold was

held in a compression press during the RTM process because the liquid matrix was to be

held at 150 psi during the fabrication process. The press platens keep the mold closed and

minimize the deflection of the mold components at this hydraulic pressure as well as affect

a vacuum- and fluid- seal.
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MATERIALS AND FABRICATION

The matrix chosen for this project was PR-500 Epoxy Resin produced and marketed by the
3M Company. It is a proprietary one-component epoxy resin especially formulated for the
fabrication of advanced composites by the RTM process. It is a high strength epoxy with
exceptionally good mechanical properties, especially under wet conditions. The Graco
Heated RTM Supply Pump (Figure 1) was designed for injecting the matrix material into an
RTM mold. The matrix contains a powdered curing ingredient suspended in the thick ep-
oxy matrix paste. The powder melts at approximately 2800 F. The latent cure system must
be melted before it reaches the fiber preform., otherwise the preform would filter the pow-
der out of the matrix before it dissolves in the epoxy. This feature was particularly useful
for the RTM process because it allowed the matrix to be pumped through the plumbing be-
fore the matrix was activated by dissolving the powdered ingredient. Therefore, the matrix
plumbing between the pump and the mold was almost all reusable between injection cycles

without cleaning.

Air Cylinders(2)

Matrix Exit upto

850 psi& 200 OF

:'.'... ... ' Hot Plate to
Matrix, 1 gal.Can .. Heat Matrix

:.:.'.'....::.::....:.'..'..::..:.'..:to 150 OF

Figure 1. Graco Heated RTM Supply Pump
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The reinforcement chosen was W5-322 plain weave carbon fiber fabric (16 layers) pro-

vided by Fiberite, Inc. After a few initial trials with several foam densities, a Rohacell® 71

WF (Rohm Tech Inc.,) rigid foam core (3.2 lb./cubic ft) was found to maintain the final
projected shape and contour of the stiffener. The foam core was inserted between the 8th

and 9th plies in the mold prior to the RTM process.

lot

1
"9.t~hees - -

Figure 2. Integrally Stiffened RTM Panel

The matrix and vacuum plumbing system is illustrated in Figure 3. The mold was placed in

the compression press and the copper tubing was assembled as shown. Copper tubing, 1/4
inch outer diameter with 37 degree flared tube fittings, was used throughout. At the time of

assembly, a small amount of vacuum grease was applied to each joint to enhance the vac-

uum seal. All of the plumbing on the matrix entrance side of the mold was wrapped with
electrical heating tape and adjusted to 1500 F. The plumbing temperature on the matrix exit

side of the mold was set at 2000 F. The exit side of the mold contained a shut-off valve, a
matrix trap, vacuum gage and a vacuum pump. The entrance side of the mold contained a

shut-off valve, a needle valve and the Graco Heated RTM Supply Pump.

The plumbing was vacuum tested to determine if the system was vacuum tight. This was

accomplished by closing the inlet valve, opening the outlet valve and turning on the vacuum
pump. After the vacuum reached about 30 inches of Mercury, the vacuum pump was
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turned off and the vacuum gage was observed for vacuum leaks. If the gage indicated a

leak of over one inch in 15 minutes, the plumbing connections were retightened and

retested. A vacuum tight plumbing system is required for a successful RTM molding cycle.

Press Platens (2)
Thermal ,,Clamped to 12 tons

Insulation (2)INeedle Valve Flow

Rate Adjustment
Valves (2) '

S"Nd • •to 320 OF
•N• Plumbing

S~Heated to 200 OF

Matrix Plumbing
Heated to 150 OFTrap

Vacuum Gage Matrix Pump

150 OF, 150 psi,
15 Minute Fill

Vacuum Pump (Less than 1 torr)

Fig. 3: Injection Set-up Showing Plumbing Arrangement

The preform was constructed of sixteen layers (eight under and another eight over the
'core') of W5-322 carbon fiber plain weave fabric stacked in a quasi-isotropic sequence.

The dimensions of the layers in the transverse direction to the core in the stiffened panel

were adjusted appropriately to fit the mold cavity precisely.

The set-up and conditions illustrated in Fig. 3 are used to inject the matrix. A coat of mold

release was applied to all surfaces of the mold. The O'ring and the O'ring groove were

cleaned, lubricated with vacuum grease, and assembled. The preform was placed into the
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mold cavity with the compression press. The vacuum pump, heat to matrix plumbing, heat

to Graco wiper plate assembly and heat to the mold were turned on and allowed to stabilize.

Thermocouples were attached to various locations in the matrix plumbing- and mold-

equipment. The mold temperature was set at 3200 F, the matrix in-let plumbing and Graco

wiper plate assembly temperatures were set at 1500 F and the matrix out-let plumbing was

set at 2000 F.

Before commencing the matrix injection, the vacuum seal was rechecked to determine if the

plumbing joints continued to seal at elevated temperature. If a leak was found, it was re-

paired and rechecked. The compressed air to the Graco was adjusted to 40 psi with the

needle valve closed. The air to the air cylinders was set at 10 psi and the air to the matrix

pump was set at 22 psi. The vacuum pump was turned off. The needle valve was slowly

opened and the frequency of the pump stroke was observed and the needle valve adjusted
to provide one stroke per minute. When the matrix was observed to flow into the matrix

trap, the matrix exit valve was closed and the matrix pump increased the liquid matrix pres-

sure to 150 psi. The exit valve was opened briefly two times to "burp" a small amount of

matrix through the mold. Finally, the matrix was pressurized to 150 psi and held for 60

minutes. This pressurization reduced the size of any remaining air voids and matrix polym-

erization shrinkage.

The mold was held at 3200 F for two hours as recommend by the matrix manufacturer to
achieve a full cure. The mold halves were separated at the cure temperature of 300 F and the

part was removed from the mold at room temperature.

The preceding demonstration has served to illustrate the feasibility of fabricating a two-

stiffener panel without any 'bonding' of the stiffeners as is customary in the 'autoclaved'
processing. The new RTM technology could prove to be very cost-effective in processing

and fabricating geometrically complex components. Further, it is shown that a light
weight foam could be used to 'retain' the shape of complex parts. Mechanical properties

of the stiffened panels are being evaluated and they will be reported later.
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INTRODUCTION

A major problem encountered in the processing of composite materials is the inducement of
residual stresses. The detrimental effect of these stresses demands the development of an
optimisation scheme for the minimisation of residual stresses in the processing of composite
materials. To accomplish this objective, a residual stress process model should incorporate
viscoelastic material response, chemical and thermal shrinkage effects and mechanical property
development during cure. Previous works have used either elastic models [1,2] or have restricted
the analysis to the cooldown phase of the cure cycle [3,4]. Additionally, most of the analyses are
limited to either thermally induced strains solely or chemically induced strains solely.

PROBLEM STATEMENT

The constituent materials of the composite react differently to the changes in environmental
conditions encountered during processing. Chemically, the reinforcing fibres are affected very
little during the process cycle. The polymer matrix on the other hand will contract during
crosslinking by as much as 6% in thermosets. There are thermally induced deformations as well.
The reinforcing fibres show very little thermal deformation during cooldown due to their highly
oriented structure. The polymer matrix on the other hand has a higher coefficient of thermal
expansion, typically an order of magnitude or more. After processing, the composite must be
well-bonded and continuous, therefore these deformations are balanced internally within the
composite by the inducement of residual stresses. Processing induced residual stresses can be high
enough to cause cracking within the matrix even before mechanical loading [5]. This
microcracking adversely affects the strength of the material and exposes the fibres to chemical
degradation [1].
The case of a [0'/ 9 01] cross-ply laminate is considered. The cure kinetics response is modeled by
the Bogetti and Gillespie [6] equation, viz.

dt - exp(- TE)(l -a)n am
(1)

where A is the frequency factor, AE is the activation energy, R is the universal gas constant, T is
the temperature and m and n are cure kinetics exponents.

The laminate non-mechanical strains are composed of chemical strains and thermal
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strains. The longitudinal chemical strains are taken to be zero since the fibres do not
experience chemical strains during the process cycle.

e2c =/81 + ,8210 0( (2a

c cf

e2  = e2  a>ac (2b)

where ej is the non-mechanical laminate strain, e' is the laminate chemical strains, P31, P32, and P3

are empirical transverse chemical shrinkage strain modeling coefficients and exponent
respectively, a' is the degree of cure when chemical shrinkage is complete and e2 f is the final
transverse chemical shrinkage strain.

The thermal strains can be modeled using the longitudinal and transverse thermal expansion
coefficients [7].

eiT =a,(T- T.)

where e' is the laminate thermal strain ai is the thermal expansion coefficient and To is the initial
stress free temperature.

The transverse modulus dependence on degree of cure is modeled by the following expression [8]:

E 22i (a) = E 0_a<a" (4a)

E22i (a)=ao + ala +a2 2 &*<a (4b)
where E22i is the initial transverse modulus, E is the uncured transverse modulus, a* is the degree
of cure at initial transverse modulus development, ans ao, a, and a2 are the transverse modulus
modeling parameters.

The longitudinal modulus and major Poisson's ratio are assumed to be linearly dependent on
degree of cure as indicated from experimental testing, [7]. Thus,

EllI(aZ) "-ElIi +- (EllIf -- El i)a (5)

v12 ((a) = V1 2i + (1/12f - V12i (6)

where El, is the longitudinal modulus, Elli is the uncured longitudinal modulus, El1f is the fully
cured longitudinal modulus, v,2 is the major Poisson's ratio, V121 is the uncured major Poisson's
ratio and V12f is the fully cured major Poisson's ratio.

The determined mechanical properties are then used to calculate the elastic compliances which
are in turn used to calculate the time-dependent stiffnesses. The transverse compliance is taken
as the only time-dependent compliance. With the strains and stiffnesses determined throughout
the laminate the moment resultants can be calculated to be [8]

t

M1(t) = -M 2(t) = h2 F{a(), (t) - )](er) -e2(r))dr
:0 (7)

where F is given by
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F(a,) [Q122 (at) + Q11(at)Q22(a,t)]
[Q11(a,t) + Q22(a,t) + 2Q 12(a,t)] (8)

Since Equation (7) is a history dependent integral, the degree of cure, a(T), is represented as a
function of -r and not the current time, t, hence the use of shift factors and reduced times, ý(t) and
•(r), which are given by

w fds
o aT[T(S)] (9a)

Sds

o aT[T(s)] (9b)

where aT is the shift factor

aT(T) = exp( - B2)
T (10)

and B1 and B2 are empirical shift factor modeling parameters.

NUMERICAL RESULTS AND DISCUSSION

Parametric Study

When considering the input requirements of the chosen process model, it is observed that the only
parameters that the engineer has control over are the initial stress free temperature and the applied
temperature profile.

Cooldown gradient investigation

An analysis of the Figures presented in [8] indicate that the residual moment and hence residual
stress profiles follow closely the applied temperature profile. Also evident is that the greatest
increase in residual moment occurs during the cooldown phase of the cure cycle. Investigation of
the this gradient shows that the residual stresses decrease initially with increasing gradient, up to
a point of optimum gradient where the stress is the lowest and thereafter begins increasing with
further increase in gradient. The possible change in stress observed is 63%.

First to second dwell temperature rise

Analysing the temperature-moment diagram [8] again results in the observation that there is also
an increase in residual moment (stress) in the period of temperature change from the first to second
dwell temperatures. Analysis of this observation yields a surprising result; the residual stresses in
the composite decrease with increasing gradient. The lowest stress achieved occurs at a gradient
that constitutes an almost instantaneous jump. Investigation indicates a possible decrease in
residual stresses of 30%. The results observed in this investigation has a second advantage; the
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steep gradient shortens the processing time of the cure cycle which impacts on the production rate
of manufacturing and hence the cost of manufacture of the product.

Rate of increase of temperature to first dwell

There is no evidence in the temperature-moment figure [8] to support any investigation of the
temperature gradient to the first dwell temperature. Realisation, however, of the fact that the
residual stress response is history dependent (viscoelastic) indicates that every change in the
applied temperature can have an effect on the final residual stress value, even if there is no effect
at the time of change. The results of the study of the effect of this temperature gradient yields a
result similar to the previous set in that the residual stresses decrease with increasing gradient. An
instantaneous jump amounts to a possible decrease in residual stress of 37%. There is also the
second advantage of a reduced processing time for lower residual stresses.

Pre-heating response

The last of the control parameters is the initial stress free temperature. Normally, in most industrial
cure cycles, the initial stress free temperature is room temperature. However, the materials can be
pre-heated separately before being combined to form the composite and allowing curing to
commence. Investigation of the effect of pre-heating, however, yields only a 1.3% decrease in
stress for a pre-heating temperature difference of 104 'C. The additional expenses incurred in
pre-heating the individual materials will not be justified by the small decrease in residual stresses.

The trends observed in the parametric study is evident in both plies of the laminate. The figures
quoted, however, apply to the upper surface of the 0' orientated ply.

Optimising the cure cycle

Having obtained the required tools, it now becomes possible to develop an optimised curing cycle
by combining the results of the parametric study (disregarding any pre-heating of component
materials). The optimised cycle is shown in Figure 1, along with the cure response. When the
resultant stress history is compared to the resultant stresses of the actual implemented cycle the
significance in the decrease becomes evident. The implemented cure cycle is simulated using data
from [7] and yields a final residual stress of 71.2 Mpa while the optimised cure cycle results in a
final stress of 48 Mpa i.e a 32.5% decrease. The other important reduction is that of the cycle time.
The processing time decreases from 425 minutes for the implemented cycle to 339 minutes for the
optimised cure cycle. The optimised cycle may, however, be difficult to implement due to the
almost instantaneous temperature changes. In these cases, the most rapid practical temperature
change should be applied.

CONCLUSION

The modeling of the processing environment in composite materials poses a complex problem,
hence a judicious choice of assumptions and simplifications has to be made in order to keep
complexity to a minimum while keeping the model accurate. The inherent assumption that the
temperature field is uniform through the thickness of the composite plate in the solution of the
cure kinetics equations restricts the model to thin laminates. Additionally, the heat source should
be of a uniform nature as in the:radiant heating of composites in an autoclave environment or for
hot presses. The matrix system is restricted to thermosetting, polymers in which the cure kinetics
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can be modeled by an Arrhenius type equation. The material should also be thermorheologically
simple, thus obeying time-temperature superposition. Linear viscoelastic behaviour is assumed.
All assumptions inherent in lamination theory are inclusive in the model. Moisture absorption
during processing has been neglected. The accuracy of the implemented model is verified using
test data from the experimental study conducted by White and Hahn [7]. Optimisation of the cure
cycle has facilitated an important realisation; implementation of an optimised cycle can result in
higher strength materials as well as reduced composites manufacturing costs.
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Six Axes Fittings Winder: High Speed Production
of 'T' and Elbow Parts

by
W. Shawn Kozak

Composite Machines Company

Presented by
John E. Green

There are a great many advantages to using FRP piping in the industrial
world. Fiberglass pipes have excellent corrosion resistance, making them
invaluable to the chemical and oil producing companies. The high performance to
weight ratio allows high pressure lines to be run easily. Once an FRP pipe line has
been properly installed it will have a far longer life span than its metal competitors.
The typical steel pipeline has over 5 times the maintenance costs over a twenty
year period. Unfortunately, the main drawback to completely switching over to
fiberglass reinforced plastics for every major piping application has been the initial
material and installation costs. While great strides have been made in recent years
to bring the costs of the long lengths of straight tube more price competitive with
current metal pipes, the individual elbow, 'T' and 'Y' fitting are still far more
expensive. Modem fitting winding methods are capable of producing these fitting
at a more economical rate.

There are several major problems with the current methods of
manufacturing FRP fittings. Often times, mandrels are simply placed on a rotating
fixture while an experienced operator gently guides the resin coated fibers or tape
into the correct orientation. This is a very slow and labor intensive process,
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relying on the skill of individual operators to produce consistent part quality.
Material is overused to cover inaccuracies in the pattern, and the actual laminate
structure of the completed part can only be estimated. Because of this, wall
thickness is usually far thicker than required for pressure rating. These operators
are also continuously exposed to the toxic resins.

There are several firms winding fittings on two or three axis computer
controlled filament winding machines. There have been several adequate patterns
developed, especially for elbows, that run quite well, if a little slow, on these
machines. The manufacture of 'T' fittings has even been attempted on 4 axis
CNC machines. Unfortunately, to position the fiber or tape properly, quite a
number of extra moves need to be added to the pattern, adding to the wind time.
For 'T' parts especially, there is often still some manual intervention required.
The triangular area where the tubes join is very difficult to wind over. The
program generally needs to be stopped while the operator lays a triangular shaped
piece of bi-axial cloth into the area. Winding with woven tape (which is the
preferred method of production) is extremely difficult with only 4 axes because the
tape twists and rolls on itself.

FRP pipe manufacturers have struggled with these problems for many
years. The first step is generating the correct winding patterns. CADWIND
software, by MATERIAL S.A. in Belgium, for creating non-linear winding
patterns has been widely used in the aerospace and high performance composite
fields. CADWIND software that can completely wind a 'T' fitting with tape has
been around several years, and seen some use in Europe. CADWIND has several
initial advantages for any type of fitting. Unlike metal and plastic, the mechanical
properties of fiber reinforced plastic depends on the fiber orientation in the
laminate (anisotropic). The winding process does not allow every possible
winding angle. CADWIND determines the maximum laminate strength limited by
the winding angles and develops a stable winding path on the mandrel. The
system can predict at every point on the surface the laminate thickness and fiber
orientation as well as the total part weight and fiber/resin usage. CADWIND also
allows the end user to perform a finite element analysis on the newly generated
fitting. A 'T' fitting that is just a computer concept can be pressure tested and
impact tested before it is manufactured full scale, saving valuable production time.
Once the optimal fiber path has been determined, it needs to be translated into
machine movement.

Most pipe manufacturers have been reluctant to invest time and money into
designing their own custom machinery necessary to run these complicated winding
patterns. Often these cumbersome pieces of equipment can only wind one of two
types of fittings, and sit idle after producing their quota. Composite Machines
Company has developed a line of six axis CNC winding machines supported by
CADWIND generated winding patterns that are capable of tremendously boosting
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fitting production. While it is not possible to wind every fitting on one machine,
the three machine sizes can accommodate the majority of manufacturing needs.
The small machine can handle up to 8.0 inch fittings. The intermediate machine
works best for 8.0 inch to 16.0 inch pipe. The large fittings winder is capable of
winding up to 24.0 inch elbow and 'T' fittings.

The heart of these winding machines is the CNC machine control system.
All six axis are servo controlled, providing quick, accurate movement. The control
system takes into account machine accelerations and speed as well as the stroke
limitation of the various axes, to produce a smooth winding pattern. The pattern
allows the machine to lay the fibers along the calculated fiber path while avoiding
collisions between the mandrel and the delivery eye in the shortest possible
winding time.

Figure 1 provides a general sketch of the relative position of each of the six
axes. The first computer controlled winding axis is the overhead turntable. This
axis rotates in a horizontal plane below the machine frame. The large shaft is
constrained by angular thrust bearings and supports the ground beam from which
the headstock and tailstock arms are mounted. These arms are adjustable in and
out from the machine center and allow for different mandrel lengths. This axis
allows for the circumferential winding of the leg of the 'T' fitting as well as orients
the mandrel at the correct angle for the center section crossover winding.

The headstock arm contains the spindle drive for the second axis: It has a 3
jaw chuck to easily engage a wide variety of tooling. The spindle axis allows the
main tube of both 'T' and elbow fittings to be wound in a conventional manner.
The opposing end of the mandrel is supported by an adjustable live center or a
quick release pneumatic collet mounted in the tailstock arm. This axis needs to be
well powered and accurate. Both 'T' and elbow mandrels are unbalanced along
this axis. This unbalanced load creates additional force that needs to be
compensated for by the servo motor as the mandrel is accelerated and decelerated.
The spindle motor drive needs to be particularly accurate because as the mandrel
spins in one direction, the position error is cumulative. A homing proximity
sensor on the spindle itself allows the machine to re-calibrate itself during the
homing sequence.

The horizontal or X axis is common on almost every filament winding
machine. Driven by a chain, it allows for rapid traverse and quick accelerations
for low angle winding and crossover winding. This axis typically limits the
maximum fiber feed rate of the machine on extremely low angle winding. This
feed rate is normally determined by fiber wet-out in the resin station, and generally
determines the wind time of the entire part.

Axis 3, the radial carriage, moves in and out toward the center of the fitting
(Y direction). This axis of motion allows the delivery point to closely follow the
surface of the mandrel being wound. The radial carriage allows the cross over
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angle to change in the wound radius that joins the tube with the leg. This axis has
a much longer stroke than on a typical filament winding machine for
manufacturing pipe. The delivery point should be capable of traveling from the
center of the turntable and spindle rotations back away from the mandrel such that
the delivery point can clear the swinging headstock and tailstock. This long radial
carriage needs to be structurally stiff in order to keep the delivery eye in constant
relation with the moving sections of the X,Y,Z carriages, and place the fiber along
the path expected.

The leg of the 'T' fitting projects downward while it is being
circumferentially wound. In order to allow helical winding on this surface as well
as place fiber or lay tape into the triangular intersection of the fitting, the fifth, or
vertical (Z) axis is necessary. The stroke of this axis needs to travel from slightly
above the top surface of the 'T' mandrel in the leg down position all the way
below the bottom of the leg. Once again, gravity has an effect on the servo motor
acceleration. There needs to be some form of counterbalance to even out the load
seen at the motor whether it is lifting or lowering the radial carriage in to position.
This counterbalance, while it loads the motor in the lowering situation, is crucial
for smooth servo performance.

Last, the rotating eye (sixth axis), controls the fiber band or tape twist. This
eye is typically fitted with a comb bar (for fiber only)at the eye entrance and a
smooth delivery bar is the last contact point before the mandrel. As the mandrel is
positioned properly by the other axes, the eye is rotated such that the delivery bar
is constantly maintained parallel to the mandrel surface. In addition to preventing
twists and kinks, laying the fiber band/tape down as flat as possible on the surface
helps maintain consistent fiber performance in the laminate without lumps or
hollows where the bandwidth has compressed or spread.

When all six axes function together as a team, the results are quite
impressive. Once the mandrel shape has been input into the pattern generation
software, the optimal fiber path can be determined. This pattern is then
downloaded into the machine control system. A minimal amount of minor
modifications are sometimes needed to prove the pattern on the actual mandrel.
The part can then be wound using pre-impregnated material or by mounting a resin
bath on the radial carriage of the machine. In field tests, a 16.0 inch elbow
mandrel was completely wet wound in just 27 minutes, approximately 40% less
time than the identical mandrel could be done by hand. This was then repeated
over and over again, producing identical fittings with identical resin and fiber
usage and very similar laminate quality and burst strength.

472



Cd,

C,

47



• .

CompositeA? Mach ines
SCompany ,

FIGURE 2: COMPUTER CONTROL CABINET WITH 'T' PATTERN DISPLAYED

A

FIGURE 3: 'T' FITTING BEING WOUND

474



FIGURE 4: SIDE VIEW OF CARRIAGE ASSEMBLY
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FIBER REINFORCED POLYESTER FILLED WITH COPPER
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'Department of Mechanical Engineering, Sultan Qaboos University, P.O.Box33, Al Khod 123, Oman.
2 Mechanical Engineer, Oman Refinery Co., P.O. Box 13, Mina Al-Fahl 116, Oman

INTRODUCTION

Rotational molding is a manufacturing technique used to produce hollow articles made from
plastic powder placed in molds heated up to 250 0C. In rotational molding, plastic powder is
placed in the mold and heated from 250 - 300 'C for a period of 10 to 15 minutes. During the
heating period, the mold is rotated at a constant speed of 20 rpm about two axes at a right angle
to each other followed by air and water spray cooling. Although rotational molding presents a
low pressure process and its cycle duration is slow compared to injection or blow molding, it
can produce very large, thick walled articles (e.g. water tanks) which are not economically
feasible by any other technique.

Most common molds, traditionally used in industry, are made of steel or aluminum. Production
of metal molds involves a long process and is time consuming (3-4 weeks per medium to large
size molds). In practice, this process is not economically feasible implying that better
alternatives must be sought especially if the molds are intended for production of customized
items.

Recently, Amiantit Oman, a local Omani company, is exploring the potential use of Glass
Reinforced Plastics (GRP) as molds in rotational molding intended for production of
customized items. However, since GRP is a good heat resistant, its thermal conductivity can be
improved by incorporation of copper powder as a filler in GRP materials. Use of molds made
from GRP/Copper materials will cut the cost tremendously by reducing the number of days
taken to produce molds with the same characteristics as other conventional materials (steel and
aluminum). Therefore, before proceeding with the fabrication of such molds, an experimental
investigation related to the effect of the addition of copper powder to GRP on the
thermomechanical properties of such composite material is required. The present paper,
therefore, is intended to study the effect of the volume fraction of copper powder incorporated
in GRP material on the thermomechanical properties of the developed GRP/Copper composite.

EXPERIMENTAL STUDY

GRP/Copper flat plates of 400x400x4 mm made of four layers of random glass fiber mixed
with polyester resin and copper powder were fabricated using Hand Lay-up manufacturing
technique. Seven volume fractions of copper powder, ranging from 5 to 30% with increments
of 5%, were used in fabricating the GRP/Copper plates. The fabrication process involved the
use of a drilling fluid mixer to initially mix the polyester resin and copper powder for 10
minutes followed by the addition of chopped fibers to the polyester/filler slurry to be heated up
to 80 0C for 30 minutes. During heating, the slurry is mixed well in order to obtain a uniform
mixture as well as reduce the resin viscosity. The mixture is then poured inside a mold and a
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roller was used to flatten the layers and get rid of entrapped air. A flat steel plate was then
placed on top of the slurry to apply a constant pressure for 2-3 hours in order to obtain 3-5 mm
GRP/Copper composite thick laminates. The laminates were then left for curing at room
temperature. A flowchart showing the procedure for fabrication of GRP/Copper laminates is
shown in Figure 1. Similar steps were performed for plates made of GRP/Copper materials
using woven fibers except that only the polyester/copper powder was mixed and poured on top
of woven fiber mats.

[Polyester] File

SMixing for 10 min

Fibers Pressure

SMixing at 80) OC

for 30 rains Steel plate

e 
MoldSDie Press

GRP/Copper *

laminateCuring at Room
Temperature I

a) Fabrication process b) Die press

Fig. 1 Fabrication process of flat GRP/Copper Plates

Test specimens for tensile, compression, shear, and flexural testing are cut according to the
ASTM and JIS standard test methods. The tensile and flexural specimens were cut according
to JIS K 7054 and JIS K7055, respectively; whereas, the compression and shear samples were
cut according to JIS K 7056 and ASTM D 4255-83, respectively. In this paper, only the
testing fixtures of the shear (see Fig. 2) and compression (see Fig. 3) are included. All tests
were conducted using a Lloyd M30K testing machine at a rate of 2 mm/min. An X-Y plotter
was used to plot the resulting load-deflection curves for different volume fractions. In addition,
disc samples of GRP/Copper composites were cut to measure the coefficient of thermal
conductivity using a thermal conductivity measuring device.

P

CENTER RAIL SLIDES • _M
THROUGH GUIDE

0 0 0 0_
00 00////•
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--ET IC Test pieceTEST IECEhotlding jig

Fig. 2 Three rail shear test Fig. 3 Compression test. fixture
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RESULTS AND DISCUSSION

Tensile, flexural, compressive, shear, and thermal conductivity tests were conducted according
to standard test methods. These tests are intended to determine the failure strength and
stiffness of GRP materials filled with copper powder of different volume fractions for each test.
The general behavior of the load-deflection curves is linear up to failure, followed by a sharp
drop in the load. In general, addition of copper powder, up to 30% volume fraction, makes a
considerable contribution to the change of strength and stiffness.

Figures 4 to 7 show the strength versus copper volume fraction for all tests. Figure 4 shows
that the flexural strength decreases as the copper volume fraction increases for both woven and
random GRP/Copper materials. In addition, it is observed that the flexural strength for both
materials is equal for volume fractions higher than 15%. The reduction in strength can be
attributed to the inclusion large copper particles that act as stress raisers in the composite.

300 -Wv 250
*Woven

2 200 1 o.
250 5RadRandom

150-_ _ _ _ _ _

~200 . .1:~__

100 10

0 10 20 30 0 10 20 30
Copper Volume fraction (%) Copper Volume Fraction (%)

Fig.4 Flexural strength vs. volume fraction Fig.5 Compressive strength vs. volume fraction

A typical compressive strength versus copper volume fraction are presented in Figure 5. From
this figure, it can be seen that the compressive strength for woven fiber is not affected by the
addition of copper powder up to 30% volume fraction. However, the compressive strength
increases for random fibers as the volume fraction of copper increases. In all cases, random
fibers have higher compressive strength than woven fibers since random fibers behave as an
isotropic material.

11 300- 40 ____________ __M 250 n Woven

R 200 30-

150 t-. 20
100

10 Woven
50 "

00 0.

0 10 20 30 0 10 20 30
Copper Volume Fraction (%) Copper Volume Fraction (%)

Fig. 6 Tensile strength vs. volume fraction Fig. 7 Shear strength vs. volume fraction

Figure 6 shows the tensile strength as a function of copper volume fraction for both random and
woven GRP/Copper. It is clear that the addition of copper powder up to 30% does not affect
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the tensile strength of random fibers, as compared to woven fibers which shows a decrease as
the volume fraction of copper is increased.

Figure 7 shows the shear strength versus copper volume fraction for random and woven fibers.
It can be seen that for random fibers the shear strength shows a slight decrease with the
addition of copper powders. However, the shear strength for woven fibers decreases up to 15%
of copper content followed by an increase in strength. It is observed that for random
GRP/Copper cracks propagate at 450 with respect to the longitudinal axis, however for woven
GRP/Copper no cracks were observed except inter-laminar delamination.

Figures 8 and 9 show fractured shear specimens of both random and woven fibers. For random
GRP/Copper, cracks are observed to propagate at 450 to the longitudinal axis; however, for
woven GRP/Copper no cracks are observed except inter- laminar delamination.

Fig. 8 Fractured shear specimen (Random) Fig. 9 Fractured shear specimen (Woven)

Figure 11 shows the coefficient of thermal conductivity versus copper volume fraction. The
figure shows that the presence of copper particles in the composite increases the thermal
conductivity of GRP materials. It can be seen that random fibers provide higher thermal
conductivity than woven fibers at 30% copper content.

Thermal conductivity
30

- 25

20
44 15

W5
o = +Random

o 0 0

0 Copper volume fraction (%) 30

Figure 11. Thermal conductivity test
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CONCLUSIONS

An Experimental investigation of GRP/Copper was performed. It was observed that, in
general, the incorporation of copper particles improves the thermal conductivity of the material
and reduces its strength. A follow-up study related to the design of GRP/Copper molds using
finite element analysis is being undertaken.
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Cost Comparison of RTM Hand-Lay and Cast Tooling

G. Veldsman, A.H. Basson'
Department of Mechanical Engineering,

University of Stellenbosch,
Stellenbosch, South Africa

NOMENCLATURE

A Surface area of mould (m2) Equation 1,3,7,8,9
Ap Flat surface area of mould (m2) Equation 13
AG Curved surface area of mould (M2) Equation 13
B Index: 1 if specific comer exist

0 if specific comer doesn't exist Equation 14,15,16,17
LB Labour, Cenulite & Mastercore backing (seconds) Equation 19
Lc Total labour, fast cast (seconds) Equation 5
Lcj Labour, measuring and mixing fast cast (seconds) Equation 2
Lc2 Labour, casting fast cast system (seconds) Equation 4
LcI Labour laminating inside comers (seconds) Equation 15
Lco Labour, laminating outside comers (seconds) Equation 14
LcIF Labour, laminating filleted inside comers (seconds) Equation 17
LcOF Labour, laminating filleted outside comers (seconds) Equation 16
LHL Total laminating labour (seconds) Equation 18
LHLT Total labour for hand-lay tooling (seconds) Equation 20
LG Labour, applying gelcoat (seconds) Equation 3,12
LL Labour, laminating flat and curved areas, surface vial and

CSM (seconds) Equation 13
MB Total material cost Cenulite & Mastercore backing (1998 Rand) Equation 10
Mc Total material cost - fast cast system (1998 Rand) Equation 1
MF Total material cost for fibres (1998 Rand) Equation 9
MG Total material cost for gelcoat (1998 Rand) Equation 7
MHL Total material cost for Hand-Lay Tooling (1998 Rand) Equation 11
MR Total material cost Resin (1998 Rand) Equation 8
Pc Price/litre for fast cast system (R82.34) (1998 Rand) Equation 1
PCSM Price/m 2 for 450g/m2 CSM (R8.20) (1998 Rand) Equation 9
PF Price/kg for Cenulite (R2.05) (1998 Rand) Equation 10
PG Price/kg for vinyl ester gelcoat (R54.95) (1998 Rand) Equation 1,7
PM Price/n 2 for MasterCore (R201.00) (1998 Rand) Equation 10
PR Price/kg for vinyl ester tooling resin (R32.00) (1998 Rand) Equation 8
Ps Price/rn 2 for Surface Vail (R2.80) (1998 Rand) Equation 9
S Circumference of mould (in) Equation 8,10
Sc Length of specific comer type (M) Equation 14,15,16,17
tG Applied gelcoat thickness (11m) Equation 1,7
Tc Lead time fast cast tooling (seconds) Equation 6
THT Lead time hand-lay tooling (seconds) Equation 20
Vc Volume to be cast (litre) Equationl,2,4

'Correspondence should be sent to Prof. A.H. Basson,
Dept. of Mech. Eng., Univ. of Stellenbosch, Private Bag Xl, Matieland 7602, South Africa
Email : ahb@ing.sun.ac.za
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1.Introduction

Resin Transfer Moulding (RTM) tooling can be subdivided into four main categories:

hand-lay tooling, machined tooling, plated tooling and cast tooling. These categories

can further be grouped into:

i) Small- to medium-volume production tooling (Hand-Lay and Cast Tooling);

ii) Medium- to high-volume production tooling (Plated and Machined Tooling).

The main focus of this paper is to compare the two types of RTM tooling systems in the

small- to medium- volume production category, on a cost basis. The conclusions in this

paper are based on labour and material costs of RTM tooling manufactured in-house.

Hand-Lay tooling refers to a tooling system which is build-up by applying layer after

layer of glass cloth impregnated with resin backed up by a steel frame. The "Plastech"

method was used to construct the hand-lay tooling.

Cast Tooling refers to a tooling system that is cast onto the pattern in one or more shots.

It consists of a resin that is highly filled with a filler material, usually aluminium. The

"Atlas MI 30" system was used to construct the cast tooling.

The conclusions in this paper are based on cost comparisons done on the following two

products:

i) Bell-mouth air intake;

ii) Centrifugal fan housing.

It was found that three of the major design parameters influencing the cost effectiveness

of the two systems are:

i) The surface area of the tool;

ii) Tool complexity;

iii) The aspect ratio of the tool.

Cost estimation models (making use of the design parameters mentioned above) make it

possible for designers to choose between the two tooling systems for a particular

product. The models also determine the lead times necessary for constructing the

moulds.
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2. Fast Cast Tooling

The model presented here is based on the Atlas M130 system [1]. The Atlas M130

system is a methacrylate-based two-component resin filled with aluminium. After the

addition of the hardener, the system sets up quickly at room temperature and a self-

induced exotherm cures the mould. Two formulations were developed for different

applications: the standard formulation (60% aluminium powder and 40% resin by

weight) and a highly filled formulation (85% aluminium and 15% resin by weight). The

cost model presented in this paper applies to the 85/15 formulation, used as a backing

behind a vinyl ester tooling gel coat.

2.1 Cost Model - Fast Cast Tooling

The cost model is based on time studies done on moulds produced in-house. The

manufacturing process was broken down into set-up for casting, pre-casting operations,

casting and demoulding; the times for each process recorded. After statistical analysis of

the data, the following equations were derived.

2.1.1 Material Cost - Fast Cast Tooling

The material cost is only a function of the volume to be cast and can be determined as

follows:

Mc PC x VC + PG x (1.2) 2 xAxtG (1)

2.1.2 Labour Cost - Fast Cast Tooling

The following equation determines the labour required and the labour cost can be

calculated by dividing Lc by 3600 and multiplying the result by an hourly rate.

Lcl = 46.7 x Vc + 684.4 (2)

LG 353.0 x A + 261.8 (3)

L = 278.3 x Vc + 88.2 (4)

Lc = Lcl + LG +Lc2 + 475 (5)

Tc = Lc+8985 (6)
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Fast Cast Labour
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Figure 1: Fast Cast Labour

3. Hand-Lay Tooling

The hand-lay tooling system is based on the "Plastech" or "Allan Harper" method for

constructing composite RTM tooling [2]. The method is used by SANI in South Africa

as well as various overseas companies. It is a vinyl ester-based *ystem comprising of

tooling gel coat, 7 layers of 450 g/m2 chopped strand mat (csm), mineral filler backing

blocks (mastercore), another 2 layers of 450g/m2 csm and lastly a floating steel frame.

The cost models presented here are based on time studies done on moulds produced in-

house.

3.1 Cost Model - Hand-lay Tooling

The cost model for the hand-lay tooling system again comprises a material cost

component and a labour component. Only the direct cost for producing the mould is

provided for and cost models for the pattern and other related processes will follow.

Earlier models can be found in Veldsman et al., 1996 [3] and Veldsman, 1995 [4]. All

costs are for one mould half.

3.1.1 Material Cost - Hand-Lay Tooling

Only the final equations for the material costs are given and costs for inserts and seals

were not taken into account.

Mr = 1.44xAxt xP0P (7)
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MR = (2.59 x A + 0.057 x S) x PR (8)

MF = (1.lxPs+9.9xPcsm)xA (9)

MB = (0.47xA+0.048xS)xPF+0.9xAxPM (10)

MHL =MG+MR+MF+MB (11)

3.1.2 Labour Cost - Hand-Lay Tooling

The complexity of the tool plays an important role in determining the final

manufacturing cost of the moulds. Kim, 1991 [5] defines a complexity index for

composite cost modelling based on the assumptions that the process can be modelled as

a first-order system. For our first-order model we defined complexity as a function of:

i) Percentage of surface area being flat;

ii) Percentage of surface area being curved;

iii) Total length of sharp comers;

iv) Total length of filleted comers.

The model also distinguishes between inside and outside comers (see Figure 2).

Outside comer Inside Comer

Figure 2: Different Comers

LG = 353.0 x A + 261.8 (12)

LL = 12639.55 x Ap + 28016.95 x AG + 6010.07 (13)

Lco = B x (360.22 + 2876.19 x Sc) (14)

Lcj = B x (542.73 + 1283.99 x Sc) (15)

LcoF = B x (283.21 + 1835.25 x Sc) (16)

LclF = B x (52.81 + 1275.12 x Sc) (17)
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Lrm = LL + Lco + LcI + LCOF + LcIF (18)

LB = 242.45 + 4356.4 x A (19)

LHLT = LG + LHL + LB (20)

THLT = LBLT + 61920 (21)

The labour cost can be determined by dividing LBLT by 3600 and multiplying it with an

hourly rate.

4. Conclusion

By making use of the above the designer can determine the costs as well as the lead

times necessary for producing moulds with the two systems. He can define the cost in

terms of design parameters such as surface area, complexity (flat or curved areas,

comers etc.), and volume. By using this in conjunction with cost models for fabrication

of welded assemblies, as published by Schuster, 1997 [6], he can make a choice

between the two systems. For small complex geometries, where the lead time is

important cast tooling will probably be the most cost effective, whereas for larger

moulds hand-lay tooling might be more cost effective.
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VOID FORMATION DURING RESIN FILM INFUSION PROCESS

AND OPTIMUM TEMPERATURE PROFILE.
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4001 Durban, South Africa.

INTRODUCTION

The resin film infusion (RFI) method to produce composite structures has been
developed to overcome the problems encountered in the resin transfer moulding. These
problems include low fibre content, necessity of using expensive matched moulds, long
distances for resin to flow to fill out the fibrous preform, and void formation. The RFI
process compresses the preform and draws the resin through it producing high quality
composite parts from a wide range of fibre and resin combinations. However, flaws that
may originate from the process can severally degrade the material properties of
structures obtained by RFI. One major imperfection arises if voids are formed in the
resin during manufacturing. The voids may occur at different stages of the process and a
thorough understanding of the mechanisms of void formation requires several aspects of
the process to be taken into account. There has been a number of studies in recent years
explaining the void formation in composites and offering ways of reducing the void
content [1-6]. It is generally accepted that one of the most common features of voids is
that they are formed at the resin flow front [4-6].

The objective of the research presented in this paper is to develop a mathematical model
of pore formation during RFI process. An analytical model is developed to describe
cavitation conditions in the resin. This approach leads to an understanding of the
influence of temperature on bubbles formation. The use of non-linear equation of
filtration allows to define pressure distribution inside viscous liquid resin. The fibres
which form the woven fabric are assumed to behave as linearly elastic bodies and the
resin as a non-Newtonian viscous fluid. Based on the results obtained from this model it
the optimum temperature profile for this process is obtained.

FRACTURE OF LIQUIDS

When the tension in a liquid becomes rather high, it becomes possible for a bubble to
nucleate homogeneously. This process is called cavitation, or fracture of the liquid.
Fisher [7] showed that the rate of nucleation of bubbles I, is given by the following
equation:

NAkT x167ty
IV Vh e3P-p+48
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where NA is Avogadro's number, k is Boltzmann's constant, h is Planck's constant, VM is
molar volume of liquid, Q is activation energy for molecular transport across the
liquid/vapour interface, I is absolute temperature, YLV is liquid/vapour interface energy,

pv is the pressure of vapour in the bubble; P is the stress in the liquid (which is equal in
magnitude to the pressure, but opposite in sign; thus P is positive, when the liquid is in
tension). The nucleation rate Iv has significant dependency on P, as illustrated in Figure
1. The pressure changes by only about 10% as Iv varies by six orders of magnitude, so
the fracture pressure is quite well defined; moreover it is weakly dependent on Q.
Cavitation occurs at such a high tension, that P» Pv, so the vapour pressure can be
neglected. Therefore letting Q = 0 and Pv = 0 and choosing a detectable nucleation rate

of IV = lx 06 m-3 s-, the fracture stress is accurately approximated as

16Cy3(P*•3kTln(ION~kT/V~h)(2

since the logarithmic term varies little for different liquids, equation (2) can be further
approximated by

P* (GPa) 19.8y 3/T 112  (3)

where Y LV is in Nm and T is in K. The corresponding critical nucleus size for bubble is

r* 2YLv j 3kTln(IO-6NAkT/VMh)-P* 47 4nLV4

or

r* (nm) = 0.16, /yLv (5)
Bubbles with radii larger than r* grow, while smaller bubbles shrink.

The typical temperature conditions which is used in RFI process and corresponding
dependencies for P* and r* are shown in Figure 2. It is quite clear that cavitation is
more likely to occur when resin infusion is performed at higher temperatures.

.3 .1
1s I(m"3sl) 2r5 (rm*(MPa)

10,0 15IV r* (nm) P* j 6.00

10 10, o0. .o.75

10 0 2.4 - r* -57

10"5lk O 2.3 - "••- 5.2510

10"13 2.2 I I 5.00

34 35 36 37 38 39 40 300 400 500
P* (MPa) r (K)

Figure 1. Homogeneous nucleation rate at Figure 2. Effect of temperature on r* and
T=400 K calculated from Eq. (1) for epoxy P* for epoxy resin.
resin
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PRESSURE IN TIHE INJECTED RESIN

Let us consider the resin film injection through the pores of rigid network with a uniform
pore size rp as shown in Figure 3. In Figure 3(a) no resin flux is occurring. The liquid
resin penetration into the woven material is initiated by reducing the tension P which
develops in the liquid according to the Gibbs-Thompson equation:

P = -(RT/VM)ln(pv/pO) (6)

where R is the ideal gas constant, pv is the partial pressure of the vapour and po is its
equilibrium value. If the contact angle 0 between the resin and network is less than 900,
fingering menisci start to form in the mouths of the pores at the resin front as soon as the
liquid resin begins to propagate as in Figure 3(b). The radius of the meniscus is related
to the tension in the resin by Laplace's equation:

P = -2y Lv /rm (7)
where rm is the radius of curvature of the meniscus.

a) b)

Figure 3. Schematic of a woven material with uniform pores: (a) before penetration of the
resin film; (b) after resin fingering.

The flow of resin through the woven material jr obeys Darcy's law, viz.,
r VP 

(8)

where D is the permeability of the woven material r7 is the viscosity of the resin and VP
indicates the pressure gradient. Mathematically the problem of the resin flux through the
woven material is a variation of the well known Stephan's problem. Thus, an additional
equation to describe the resin film penetration into the woven material is required to solve
this moving boundary problem. Denoting the coordinate of the interface as h(t), the
following equation can be used [8]

q r(l + C., (o)Pc /Kw - C. (0)) dh(t) whnx= )(9VP =when x3 =hf
D dt

where Kw•is bulk modulus of the woven material, C. (0) is initial concentration of the solid
phase and P, is a critical value of pressure at the resin front.

Using equations (8) and (9) the following equation for the pressure field in the resin can be
derived
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aP(x3 't) KL V.(DVP(x3 ,t)) +D(VP)2 =0. (10)
a 1t KlKw

In obtaining equation (10) it was taken into account that the permeability D of the woven
material changes with the solid concentration and it was also assumed that the bulk
modulus of the liquid is essentially less than that of the solid. The solution of (10) has to
satisfy the following boundary condition:

DVP(0, t) = j(11)
T1

where jext denotes the external flux.

METHOD OF SOLUTION Condtons

A basic outline of the numerical procedure is shown in
Figure 4. Starting with the resin film located at the top C newoA

of the woven material a boundary condition is resin frontpnsition

specified. These may be given in terms of constant
pressure at a point (Dirichlet), inlet velocity through Upda oteboundary conditions

the side of an element (Neumman) or a flow rate at a
point. The Dirichlet boundary condition was used in
the recent study. A Flow Analysis Network [9] pressure distribution FEM
technique is then used to calculate the free surface
location at a new time step. After each time step the N' ftwstionisompleted

free-surface boundary conditions are reset, and the .Y,
governing equations are solved for new pressure values
using Finite Element Method. Once the new pressure
solution is known, the process is repeated untill the Figure 4. Flow chart of the
woven material is saturated completely. numerical algorithm

NUMERICAL RESULTS AND DISCUSSION

The viscosity of the resin depends significantly on the temperature of the process. The
dependence from [10] was used in the recent study, viz.

in(T) = rj0 exp( +iiI (12)

where ýt, q, and K are constants which have to be obtained from the experiment; a denotes
the degree of cure and T is the temperature at which the process takes place. As an
example, the data obtained by Kang et al. [10] were used, i.e. a =0.2, k = 26.89,
q =1034.

For simplicity, external pressure was not considered in this analysis. However, it can be
taken into account by superposition. The following mechanical parameters were used in

the study for resin and solid woven material: viscosity r7o=5.5x10"s Pa.s; critical
pressure Pc=280 MPa; compressibility modulus of resin KL=130 Mpa; initial volume
fraction of fibres Cs(O)=0.5; permeability of the woven material D= 1.42x10-12 m2 ; bulk
modulus of the woven material KIw= 4.2 GPa; poisson's ratio of the woven material
v=0.25.
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Figure 5. Pressure distribution along the Figure 6. Optimum temperature profile for
preform thickness: epoxy resin.
1-t=tr, 2-=0.Str, 3- t=-0.25 tr

The pressure distribution along the plate thickness is presented in Figure 5 at different
times for various temperatures. tf is the time at which the preform is completely
saturated. In the present study isothermal conditions of the process was assumed for
simplicity. The temperature decrease during RFI process has two effects. On 'the one
hand, it reduces the pressure in the resin since the resin viscosity becomes lower. On the
other hand it also reduces the cavitation pressure P*. Therefore a minimax problem has
to be solved to determine the optimal temperature profile of the process with the
pressure P being minimized and the cavitation pressure P* being maximized. For
simplicity, the resin cure is not considered in this study. Thus only two parameters are
significant: the pressure field and the thickness of the saturated zone of woven material.
A basic criterion to compute the optimum temperature profile can be formulated as the
maximization of the relation P*/P. The corresponding plot is presented in Figure 6.
The value used for liquid/vapour interface energy is YLV = 3 x 10-2 Nm. The dotted line
corresponds to the recommended regime which also have to be convenient for the
manufacturer.

CONCLUSIONS

An analytical model was developed for resin film infusion process which is used for
autoclave processing of composite structures with a high fibre volume content. The model
was used to simulate the RFI process and to study the void formation during the process.
These defects reduce the strength of the fibre composite component manufactured by this
process and can even lead to the premature failure of the component. Microdamage
formation is governed by the pressure distribution in the resin infused into the fibrous
preform. Pressure is related to the rate of infusion, preform permeability and resin viscosity
and it is governed by Darcy's law.

In the present study it was assumed that the compressibility coefficient of fibres is
essentially higher than that of the resin. However, fibrous preform, which may be
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considered as a porous medium, is assumed to be sufficiently compressible. Due to the
moving front of the resin, the problem can be stated as a moving boundary problem which
becomes a particular case of a well known Stephan's problem. This problem was solved by
finite element method using flow analysis network. Analytical model for the cavitation
pressure is developed. It is shown that temperature variation leads to change in the
capillary pressure as well as in the cavitation pressure. The minimax problem was solved in
order to obtain the optimal temperature profile for the process.
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Abstract
Ceramic matrix composites are processed at high temperatures and experience significant residual

thermal stresses upon cooling to room temperature. These stresses often result in matrix cracking prior to the
application of external loads. Matrix cracks may also appear as a result of thermomechancial loading. It is
important to detect these matrix cracks which affect the structural response using a nondestructive technique. The
method proposed in this report is based on measurements of the surface temperature of a ceramic matrix material
subjected to cyclic stresses. The elevated surface temperature is due to friction between the fibers and the matrix
that occurs in the presence of bridging matrix cracks. The solution presents a relationship between surface
temperature and matrix crack spacing that can be used to identify the extent of the damage.

Introduction
The fact that ceramic matrix composites (CMCs) are processed at a high temperature implies significant

thermally-induced residual stresses. These stresses can result in damage even before the material is subject to an
external load. For example, Bischoff et al. 1 and Nishiyama et al. 2 observed post-processing cracking in CMCs.
Additional cracks are formed when the material is subject to monotonous or cyclic tensile loads. Elevated
operational temperatures may also contribute to the process of matrix cracking. The cracks usually form a regular
pattern with the spacing that can be assumed constant. Long cracks perpendicular to the fibers, similar to those
observed by Marshall and Evans3 and other investigators, are called "bridging cracks", because the fibers bridge
the cracks without breaking. It is important to be able to determine the extent of matrix damage because, although
matrix cracks do not significantly degrade the strength and stiffness of the material in the fiber direction, they are
detrimental to those in the transverse direction and allow oxygen induced emnbrittlement 4 "7.

In the presence of matrix cracks, the fibers slide relative to the matrix in the regions adjacent to the cracks
when the material experiences dynamic loading. This is accompanied with an increase of temperature due to
friction between the fibers and the matrix as observed by Holmes and his associates 8,9. Cho et al.1 0 developed a
solution that related the interfacial shear stress to the rise of temperature of the specimen. It was suggested that the
interfacial shear stress along the fiber-matrix interface can be monitored as a function of temperature. In the
present paper, the analytical foundation is developed for prediction of the spacing of matrix cracks (and the
interfacial shear stress) as a function of the surface temperature for a unidirectional CMC. This technique can be
applied to a nondestructive testing of CMC components.

Analysis
The purpose of the present solution is to determine a relationship between the matrix crack spacing in a

unidirectional CMC and its surface temperature during a nondestructive dynamic test. The amplitudes of cyclic
stresses are assumed below the matrix cracking limit of the material so that cycling does not change the matrix
crack spacing. The solution assumes the mode of cracking employed in the theories of Aveston-Cooper-Kelly 1I
and Budiansky-Hutchnison-Evans 12, i.e. long, regularly spaced cracks. Shown in Fig. 1, the problem is formulated
in terms of the crack spacing (s), the length of the sliding distance (xo), and a distribution of stresses in the fibers
and the matrix.

The solution involves the following steps. First, the modulus of elasticity of the material is determined as
a function of the interfacial shear stresses, matrix crack spacing and the residual thernal stresses in the fiber using
a modified approach of Pryce and Smith1 3. Residual thermal stresses are evaluated accounting for the effect of
temperature on the properties of the constituent materials. Then the experimental findings of Karandnikar and
Chou14 are used to justify a simple relationship between the modulus of elasticity and the matrix crack spacing.
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Combining these two solutions, the modulus of elasticity can be eliminated giving a single equation relating the
matrix crack spacing to the interfacial shear stress. An energy balance is employed, as suggested by Cho et al. 0 , to
obtain a relationship between the surface temperature and the interfacial shear stress. This procedure enables the
evaluation of both the shear stress and the matrix crack spacing as finctions of the surface temperature.

A distribution of stresses in a specimen subjected to an external stress 6c is shown in Fig. 1. This
distribution corresponds to a partial slip, i.e., 2xo < s. Adjacent cracks are located at x = 0 and x = s. The stresses
in the fibers and the matrix can be evaluated based on their values at the points A and B:

a • + rf; 0E f ;+. r, (1)

where the subscripts "f" and "in" refer to the fibers and matrix, respectively, Vf is the volume fraction of the fibers,
Ef, E• and E. are the moduli of elasticity of the fibers, matrix and undamaged composite, respectively, and or and
OmT are the residual thermal post-processing stresses outside the slippage region. During cycling the composite
stress c0 varies continuously, thus the stresses given by eqns. (1) represent instantaneous values, although dynamic
(viscous) effects are not included in the present analysis.

1•1 • ~fiber ']

A /B matrix/ C•

L s
xx

Fig. 1. Distribution of stresses in the fibers and in the matrix between two cracks during cycling (not to scale).

Force equilibrium at each cross sections is satisfied. In the slippage region, the stresses in the fiber and
the matrix are linear functions of the distance from the plane of the crack, i.e., x. The stress in the fiber is12:

Cr, 2ix (2)
Vf r

where r is the fiber radius and t is the interfacial shear stress which is approximated as a constant. The stress in
the matrix within the slippage region is

, = (0 '°=2 r '¢ V.fE: T) (3)

where xo is the half-length of the slippage region given by Pryce and Smith1 3 and Vm is the matrix volume
fraction. The residual thermal stresses in the fiber and in the matrix can be found from the force equilibrium at an
arbitrary cross section, i.e.,

Ef Vf (e - af ATPo) + E ,V,(e - amATPo ) = 0 (4)

Here a.f and a are the coefficients of thermal expansion of the fibers and the matrix, and ATp, is the difference

between the processing and operating temperatures. The strain, 8, can be immediately evaluated from eqn. (4).
However, considering the fact that the processing temperature of CMCs is usually above 1200 0 C, it is necessary to
account for an effect of the temperature on the properties of the materials of the fibers and the matrix. In this case,
the strain will be found in eqn. (5).
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T oEf (T)Vfaf (T) + E,,(T)V ,a,(T)

f •Ef(T)Vf + E,(T)Vm

The integration is carried out from the processing (Tp) to the operating (To) temperature. The residual stresses in
the region that is not affected by the slip are found as

7=Ef (7o)J EfVf+EmVrn, daT ; f ffEVf( + V (6)
ETV. +EV., T. :P EV .,y, 6

Tp

The instantaneous modulus of elasticity of the material is evaluated by modifying the approach adapted by
Pryce and Smith13 . The instantaneous mean strain in the fiber is found by averaging the strains over the spacing
length:

S _~p[a,(2VfEf +V=~ erý] s- _____af

2 X6A + sx s Vf Ef E, Ef s Ec J

The mean residual strain is found from an analog of eqn. (7) where the mean strain in the region AB is
given by o•J/2Ef, while the strain within the region BC is crT/Eý (see Fig. 2). Accordingly,

:r s-xo r
S(8)

ef s Ef

fiber

matrix C

A 
B

-- -xo -' Xo

x

Fig. 2. Thermal residual stresses in a unidirectional material with matrix cracks (not to scale).

The additional strain associated with cyclic loading can now be found as a difference of the strains given
by eqns. (7) and (8), i.e.,

V• VE. f V,.E.,

Vn=Em+r.. mE JE~(9)
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The instantaneous modulus of elasticity is determined as:

E dcI r E.VV (, EmV,. 'r ] E, (10)

d 6 
2 sr f Vf~~ EVf 'f

This will be used with the experimental findings of Karandikar and Chou14 who showed that the change of the
modulus of a unidirectional Nicalon fiber CAS matrix composite is a linear function of the matrix crack density
(u/s):

AE= Ec - E= k +k 2 (l/ s) (11)

where k, and k2 are constants. For Nicalon fiber CAS matrix, kl = -6.7350 GPa and k2 = 6.2754 GPa.mm. The
present approach to the solution remains valid as long as an arbitrary analytical relationship AE = f(s) is available.
Combining eqns. (10) and (11) yields the relationship between the interfacial shear stress and the matrix crack
spacing:

E=s[r(2crTV (12)

The interfacial shear stress is related to the surface temperature of the specimen by considering the
equilibrium between the rate of the steady state heat loss from a unit volume of the specimen and the rate of work
performed by the interfacial friction within this volume. The former quantity was presented in the paper of Cho et
al.'° for the general case where the flow loss occurs through conduction in the fiber direction and free convection
and radiation from the surface. In this paper conduction along the fiber direction and radiation were neglected.
The rate of the heat loss from the element with the surface area As (including both surfaces of the specimen) and
the volume V = Ast/2 where t is the thickness becomes

In eqn. (13), Ts and Ta are the surface and ambient air temperatures, respectively, h is the heat transfer
coefficient. The heat transfer coefficients from the surfaces of a representative element can be estimated using
standard relations for heat transfer due to natural convection (see, for example, Incropera, F.P. and DeWitt, D.P.,
"Fundamentals of Heat and Mass Transfer," 4th edition, Wiley, New York, 1996).

The work produced by the interfacial friction on the slippage length of one fiber as it is loaded is given by
Clio et al. 10

xco

W = 2f(2;r)r(uf - u.)dx (14)
0

where uf and u. are dynamic components of the axial displacements of the fiber and the matrix due to cyclic
loading that are finctions of the x-coordinate. Note that the tipper limit of integration given by eqn. (4) is affected
by the magnitude of the interfacial shear stress. The difference between dynamic components of the axial fiber and
matrix displacements can be found as

uf - U.. = de 21 W/ - '56,,W](xxo - x) (15)

2
where 8sf and 6e, are the dynamic strains at the cross section x. This equation reflects the fact that the fiber and
the matrix experience identical axial displacements at x = x., and the change of the length of the element (xo - x)
can be found as the mean strain within this element multiplied by its length.

The dynamic strain in the fiber is determined as a difference between the total and residual strains. The
former can be found from eqn. (2) but it is more convenient to use the following expression that immediately
follows from Fig. 1:

498



W- a , - T X1E-1 (16)LVf Vf , f)xo] (16

The latter strain is of course (see Fig. 2), (aJI/Ef)(x/xo).
Now the dynamic components of the strains in the fibers and in the matrix can be found as:

(f86W•:(6 1m( X_ C, (17)
f -f 0 oLE, X X0 E,

Substituting dynamic strains given by eqns. (17) into eqn. (15) and integrating eqn. (14) one obtains:

2irrrtcr 2
W =2 3 EJ x0  (18)

Note that the composite stress in eqn. (18) represents the maximum stress during the cycle, while the
minimun stress is assumed equal to zero. In the case of a stress ratio different from zero, the composite stress
should be replaced with the stress range. The rate of the frictional energy dissipation per unit volume can be found
as recommended by Cho et al. 10, i.e.,

w = 2flV/ (;rr 2s / Vf) (19)

where f is the frequency of loading and the factor "2" in the numerator accounts for the fact that equal amounts of
energy are generated during the loading and unloading phases of each cycle. Then a relationship between the
matrix crack spacing and the interfacial shear stress can be obtained from the requirement that the rate the heat
loss given by eqn. (13) must be equal to the rate of the frictional energy dissipation according to eqn. (19). This
relationship should be considered together with eqn. (12) to specify both the interfacial shear stress as well as the
matrix crack spacing.
Results

A parametric study of the model was undertaken with Em = 100GPa and Er = 200GPa. The heat transfer
coefficient was approximated as a constant h = 6W/m 2K. The coefficients of thermal expansion were assumed
constant with values of afr = 3(10"6)°C-' mid x. = 4.5( 10"6)oC' 1. The difference between the processing and use
temperature was assumed to be 600'C. The fiber radius was 10ýiro. The surface temperature rise, AT = T,-T., was
then calculated for Vf = .35, f = 10Hz and c, = 200 MPa. The form of the empirical relation in eqn. (11) places
some restraints on the values of the s. For AE to remain positive, s should be less than .932mm which is in
agreement with the recommendation Karadikar et a1. 14. There is also a minimum crack spacing which can be
calculated from eqn. (3) once the shear stress has been determined. The slippage half length X0 cannot be greater
than s/2 or the analysis is invalid. For this study for c(, = 200MPa, the minimum crack spacing is on the order of
.085mm. This is considerably smaller than minimum value used in Figure 3. As seen in Figure 3, AT increases as
the crack spacing decreases. This is expected as a result of increasing damage and sliding between the matrix and
fibers as the crack density increases.

30

&20

S10 10

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S (mm)

Fig. 3. AT as a finction of crack spacing Vf =.35, f 10Hz, cT = 200MPa
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Discussion and Conclusions
The solution presented in this report outlines the theoretical background for a nondestructive detection of

the presence and density of matrix cracks in unidirectional ceramic matrix composites. The density of the matrix
cracks and the interfacial shear stress can be evaluated using this solution, based on the measurement of the surface
temperature of the component subjected to periodic loading. The solution is obtained in a closed-form, i.e., it is
accurate as long as the basic assumptions incorporated into the analysis are valid. In particular, these assumptions
include the form of matrix cracking, i.e. long bridging cracks, and the presumed analytical relationship between
the change of the modulus of elasticity and the matrix crack spacing. However, these assumptions are justified by
available experimental evidence.
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ON CONTINUUM APPROXIMATION IN COMPRESSIVE FRAC-
TURE THEORY FOR METAL MATRIX COMPOSITES:

ASYMPTOTIC ACCURACY

IGOR A. Guz

Timoshenko Institute of Mechanics, Nesterov str. 3, 252057 Kiev, Ukraine

INTRODUCTION

There are two different approaches to description of phenomena in mechanics of com-
posites. One of them is based on the model of piecewise-homogeneous medium, when
behaviour of each component of material is described by three-dimensional equations of
solid mechanics provided certain boundary conditions are satisfied at the interfaces.
This approach enables to investigate in the most rigorous way phenomena in the com-
posite microstructure. However, due to the complexity its application is restricted to a
very small group of problems. The other approach, or continuum theory, involves sig-
nificant simplifications. Within the continuum theory a composite is simulated by ho-
mogeneous anisotropic material with effective constants, by means of which physical
properties of the original material, shape and concentration of components are taken
into account. Continuum theory may be applied when the scale of investigated phe-
nomenon (for example, the wavelength of the mode of stability loss ) is considerably
smaller than that of material structure (say, the layer thickness h), i.e.

I >> h (1)

The approach based on the model of the piecewise homogeneous medium is free from
such restrictions and is, therefore, an exact one.

The wide usage of the continuum theory, based on its simplicity in comparison with the
model of piecewise-homogeneous medium, puts into consideration the questions of its
accuracy and of its domain of applicability. The answer to it may be given only by
comparison of the results delivered by both continuum theory and the exact approach,
based on the model of the piecewise-homogeneous medium. The last imposes no re-
strictions on the scale of investigated phenomena and, therefore, has a much larger do-
main of applicability than the first one. The results obtained within continuum theory
must follow from those obtained using the model of piecewise-homogeneous medium if
the ratio between the scale of structure and the scale of phenomena tends to zero, i.e.
when

hi1 _.*0 (2)

If this is the case, the continuum theory may be considered as asymptotically accurate
one.
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The present investigation is devoted to substantiation of the continuum theory of frac-
ture [4] in compression for laminated composite materials with periodical structure.
Within the scope of this theory [4] the moment of stability loss in the structure of mate-
rial - internal instability according to [1] - is being treated as the beginning of fracture
process. By the present time investigations of the continuum theory accuracy, from the
model of piecewise-homogeneous medium point of view, have been done only for the
problems of statics and wave propagation [2, 9]. But, there are no such investigations
for problems on stability loss in composite structure yet.

Basing on the results [5-8] obtained using the model of piecewise-homogeneous me-
dium and three-dimensional linearised theory of deformable bodies stability (TLTDBS)
[3], asymptotic accuracy of the continuum theory of plastic fracture is examined in this
paper for composites with metal matrix. The investigation is carried out for small pre-
critical strains for three-dimensional (non-axisymmetrical and axisymmetrical) as well
as for plane problems. Consideration of small strains only is justified, since fracture of
composite materials with metal matrix usually happens under small deformations.

ASYMPTOTIC ANALYSIS

Let us consider very briefly the asymptotic analysis of solutions of the stability prob-
lems for layered composites in compression. Let composite consist of alternating layers
with thicknesses 2ha and 2h.,, which are simulated respectively by compressible elastic
transversally isotropic and elastic-plastic incompressible solids.- Thickness of the latter
(matrix) is assumed to be larger one. (Henceforth all values referred to these layers will
be labelled by indices a and m). Suppose also that the material is compressed in plane of
the layers by "dead" loads applied at infinity in such a manner that equal deformations
along each layer are provided. The detailed problem statement and solution within the
scope of exact approach (i.e. using model of piecewise-homogeneous medium and
equations of TLTDBS) for the above materials are given in [7, 8] and for materials with
other properties of layers in [5, 6]. It is worth noting that in the case of elastic-plastic
layers the generalised concept of continuing loading, which allows to neglect variations
of loading and unloading zones during the stability loss, is utilised.

To perform the asymptotic analysis we should apply the condition of applicability of the
continuum theory (2) to all formulae of [7, 8] and calculate the limits analytically under
this condition, which yields

aa,-.O, a, -- 0O, where aa z=rhl-', aj =rhl'-

cosh -- 1, sinh• -- , j=2,3

1(12 cs, s a (3)

On substitution of (3) into characteristic determinants derived in [7, 8] for four consid-
ered modes of stability loss we get
- for the Ist mode of stability loss
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det1fl'pq=- (•-2 0.3 )O41.1o),13304•1
hrn aa hr n a)h, w33-K1) 4/,( 17, a, h 2,1. °

(- 3143 K3113)("- K1331++ 04331 ' 1313 -- 313 (4)
ha ha ha

- for the 2nd mode of stability loss

1Pq ýa-2 -2 a 91(Z3C(12=det ,8 pqI--(a-2 1II-), 3,13(0),I33+ O)1313) 2-- (K0331K')113)2 (5)

"- for the 3d mode of stability loss

a
dety 1pqf -- - 4--2 0)3113 (,a33+ wj3I3) (1'1 K• , 13)I/ X

ha h ( 3333+ 2 1133+ K1333+ Kl'I - 2KI'133-- 2'313)+ 111, 0 (6)

- for the 4h mode of stability loss

a ade~f'q~(a 11W13 (wI33 )1313) '•--•2 = (7)

Characteristic equations (4)-(7) correspond to the 1Vt, 2nd 3rd and 4th modes of stability
loss for the case of biaxial compression (non-axisymmetrical problem). Henceforth only
this problem is analysed. Consideration of other problem statements (plane problem in
the case of uniaxial compression, axisymmetrical problem in the case of biaxial com-
pression) has proved to lead to the same conclusions.

Let us examine characteristic equations (4)-(7). It was proved in [4] that for approved
models of layers

91 n2 >0, j=1,2,3; =0, a2 = a2 =2 0, ý.2 2 (8)

Besides that, the roots of characteristic equations, which correspond to the considered
phenomenon of internal instability, must depend on properties of both alternating layers,
i.e. on the ratio hj/hrn. This feature was discussed, for example, in [6-8]. Given the
above-said and condition (6), one can observe that characteristic equations (5) and (7),
which correspond respectively to the 2 nd and 4th modes of stability loss, do not have
such roots and, therefore, do not describe the internal instability in the long-wave ap-
proximation.

Using formulae of [3, 4], components of tensor (o, K may be expressed as
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7,131 t) 3 0913311 a +llA + oa ()3333= A33 (01133= A73" 1 a a 3 1 133,=j3 13
m ~0 "1 m M m m_ mm m 0m _m

'nu= AT + K 73333- A33, K1313- /=13, Ki1331 Id" +0"1, 03113 =-PM (9)

Substitution of (9) into characteristic equation (4), which corresponds to the 1st mode of
stability loss, yields for the roots which depend on h,, /h,

ha )2 . oa• h+ a orn)( a hm n0

(1 + 3 + + -al• , )P 13 + -/, 1 3).=0 (10)
h.. ha ha

Introducing effective values of stresses (a°l) and parameters (/2,3), (A,,) in the mo-

ment of stability loss by well-known formulae

(o) " on,, ( , f / /213Sa)', (Ali)= A•ISa+ m (11)13 13 1313 11S

where

Sa -S. - , (12)
ha +h, ha + h,,,

we can obtain from equation (10) that

(11)Tr--(a+I) = (Pt13 ) (13)

This coincides with the results derived within the scope of continuum theory of plastic
fracture for laminated composites [4] given (Hi )T denotes the theoretical strength

limit.

As to characteristic equation (6), which corresponds to the 3 rd mode of stability loss, we
observe that in long-wave approximation this mode yields higher critical stresses than
the 1st mode and, therefore, along with the 2 nd and 4h modes may be excluded from
consideration. Indeed, on substitution of(11), (12) into (6) we get

-a° )= (Ai ) I SaS.( A13 A-7) 21( A3333Sa + A33 S,. (14)

From the condition of uniqueness of solution of a linear problem for orthotropic bodies
it follows [3, 4] that

A'a > 0, A'3 > 0 (15)

Besides that, real constructive composite materials show higher compressive than shear

strength, i.e.

(A 1 1)> (P 13 ) (16)
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And, finally, on substitution of(15), (16) into (14) we obtain

(0"° = (A.) + S.S.,(A A3 - A') 2(A"3S,, + A33S./) > (An) > (/U,3) (17)

Inequalities (17) clearly show that critical stresses (13) corresponding to the 1Vt mode of
stability loss, are always smaller than those corresponding to the 3Yd mode of stability
loss (14).

NUMERICAL RESULTS

Now, using the results of the previous section, the accuracy of the continuum theory can
be calculated. Values of critical strains (or other critical parameters, e.g. critical
stresses) calculated within the scope of exact approach may be found in numerous pub-
lications, e.g. [8]. Following these papers values of critical strains for the I0 mode of
stability loss under the condition of applicability of the continuum theory (2) are easily
obtained. Some papers even show them explicitly. Comparing the above-mentioned
values of critical parameters the asymptotic accuracy of the continuum theory of frac-
ture for metal matrix composites in compression can be estimated and conclusions
about reasonability of utilisation of this theory can be made properly.

As an example, let us consider a composite consisting of alternating layers of a linear-
elastic isotropic compressible filler, which constitutive equation is as follows

0 Ev
= (1 + v)(1 - 2v) I + V(1

505



and an elastic-plastic incompressible matrix with power-mode dependence between

equivalent stress and strain in the form

0= A(c5)k (19)0"19

Values of parameter 0 (i.e. the ratio of results obtained in the context of exact approach
and continuum theory expressed in percentage) calculated following [8] are given on
Fig. 1 and Fig. 2 as dependences on parameter k for biaxial and uniaxial compression,
respectively. In so doing, values of other parameters were taken as it follows: v = 0.21 ;
AlE =0.0001 (curves 1), 0.000325 (curves 2), 0.001 (curves 3); ha/h, = 0.02 (continu-
ous curves on Fig. 1), 0.05 (hatched curves on Fig. 1), 0.03 (continuous curves on
Fig. 2), 0.06 (hatched curves on Fig. 2),

CONCLUSIONS

It is rigorously proved for laminated metal matrix composites that the results of the
continuum theory of plastic fracture follow as a long-wave approximation from those
for the 1 st mode of stability loss obtained using the model of piecewise-homogeneous
medium. Therefore, the asymptotic accuracy of the continuum theory of plastic fracture
for laminated composites in compression is established. The above conclusions were
obtained for the cases of biaxial as well as uniaxial compression along layers.
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INTRODUCTION

Fracture analysis and prediction of the tolerable defect size play a significant role in
the damage-tolerant design for laminated composite structures. Damage-tolerant
design for composite structural elements should take into consideration the types of
defects possibly occurring during manufacture or service life such as scratches, impact
damaged areas, and cracks. Most of the methods and techniques developed in this
area were based on the linear approach and principles of linear elastic fracture
mechanics. At the same time the development of failure process in the laminated
composites quite often exhibits the features of nonlinear behaviour. In particular,
these mechanisms of failure could be observed for composites composed of the
combinations of cross-ply laminates (i.e., combinations of 0 0 and 90 0 plies), angle
ply laminates (combinations of + 0 and - q5 plies);- and unidirectional laminates (all
0 0 plies). The situation becomes more complicated in case of implementation of a
hybrid composites. Normally, the hybrid composites are used to provide the necessary
damage propagation resistance. This property is essential for such applications as
aircraft components, helicopter rotor blades, impact resistant structure, etc. The
application of the methods of nonlinear fracture mechanics to the analysis of the
hybrid polymer composites and structural components is discussed in this paper. The
technique is based on the combination of the nonlinear J-contour integral approach
and evaluation of the stress intensity factors of hybrid composite materials.

NONLINEAR FRACTURE CHARACTERISTICS OF COMPOSITES

Description of the severity of conditions at a crack tip in a non-linear material can be
produced on the basis of J-contour integral approach [1]. The J-contour integral can be
interpreted as the potential energy release rate per unit crack opening displacement. In
this case we can express the J-contour integral in terms of such experimentally
measured parameters as load and displacement for notched specimens subjected to
monotone loading [2]

J=-f- fdS= f- L ,d. (1)
0 50
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where P is the load per unit thickness t, a is the half crack length, S is the load point
displacement due to notch opening, h is the specimen width, and b=h-a.. The
methods for obtaining critical values Jcr of J-contour integral are based on the
experimental examinations of the notched specimens subjected to the tensile and
bending loading. In case of bending the load P can be presented in the following form
[3]

P = b2 F(/ h,a/ h) (2)
h

Function F(,/ h,a/h) is determined from the fracture test records [1,2].
Substituting this exdpression for P into equation (1), we can present the J-integral as:

2b b2 5 F
j 2 Fdg-- , d9 (3)

h0 h3 
0 '(a/h)

From the analysis of experimental results on the nonlinear fracture behaviour of
composites the following relationship may be obtained

ATF = aF(a /h) (4)
9(a /h)

The value of the coefficient a may be found by comparing the experimental fracture
diagrams obtained for the two geometrically identical specimens with different crack
size

S(P2 - P, )ha - (5)
(a2 -al)P1

Typical fracture diagrams are presented in Figure 1.

P,

P, -• - 2

P2 at1= a2+da

01.5/

Figure 1. Fracture diagrams for two specimens with the cracks
of different lengths.

Taking into account the equations (2) and (5) the critical value Jc, can be expressed
in the form
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1( 1 t'
!'r = fJP~d.5 JP2dS5 (6)
J t ,b h(a2-a,) 0d ht(a2 -a,) o

The following representation of the load per unit thickness t can be used in case of
tensile loading [2]

P = bF(8/h,a/h)
Using the procedure similar to outlined above for bending the following equation

for J,, can be derived for the tensile stress state
1 51pd~ 1 5o[

Sbt f ht(a 2 -a1 ) J(P2 -Pi)dg (7)

The critical values of J- integral characterise the material crack resistance and can be
used as a means to estimate the maximum defect size for a given stress or the
maximum permissible stress for a given intrinsic defect size. Further application of
the J -contour integral approach is to convert determined above values of Jc to
equivalent stress intensity factors K,,. It is well known that J -integral is related to the
crack opening displacement. The following equation can be used to relate the fracture
toughness parameters

K 2=BJ (8)
where K, is the stress intensity factor, and B -is the toughness parameter of
composite.

STRESS INTENSITY FACTORS FOR HYBRID LAMINATES

Consider a hybrid composite laminate of thickness h. The laminate is composed of N
orthotropic layers made of different materials. Each layer has a constant thickness h,

N

so that h = h, .The fibre angles are oriented symmetrically with respect to the
i=1

middle surface of the laminate. The coordinate axes are x ,y, and z, where z is
perpendicular to the laminate plane with the origin lying in the middle surface . The
stresses in the coordinate axes are given by

[a] = [A][6] (9)

where [o-] = (a., ,cr3,T xy), [6] = (ex ,6y ,7xy)T,

All A 1 2  A 16 "

[]=A12  A22  A26
.A16 A26 A66)

and A,,,,, are the stiffness coefficients of the laminate given by
1 N

An, 1, =-N I O(nh , (m,n =1,2,6),
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ande e, , , and y denote the normal and shear strains. The constitutive equations

for the ith layer are presented as follows

[SW I= [Q.12 ][--I

where [s(' ] = (a(') Ur(i).0 T) denotes the stress vector in the x-y coordinate system.

The stiffness coefficients Q,(,,, for the separate layer are given by the known
relationships expressed in terms of the mechanical characteristics of the unidirectional
layers and parameters of fibre orientation [5]. The laminate stresses [a] are related to
the stresses acting in the ith layer in the following way

1N 1 N 1 N 0S=-y- h -a h =- , y('),i r= z .h (10)
X h -x= yh Xi~l '=1"

The laminate contains a through crack of length 2a at the centre. The crack is oriented
under right angle to the loading direction and tensile stress ax correspondingly. In
this case the stress intensity factor is presented as

K1 =o'x FaY (11)
where Y is a correction function that depends on the notched specimen geometry.
Similarly, for the separately considered ith layer the stress intensity factor is defined
as

K1() = o' ) Wfa-Y (12)

Stresses ,-x) can be expressed in terms of the stresses ax using the equations (9),
(10) [5]. As a result the stress intensity factor for ith layer may be determined from
(12) as follows

K -) = a.,h-Fa Y(Q,() A2 2 - QI) A, 2) / A (13)

where A = AllA22 -A1 2 . Substituting equation (13) into (10) and subsequently into
equation (11) yields the stress intensity factor for the laminate in the following form

1 N

K, = - E K(') hi. (14)
h j=1

This equation relates the stress intensity factor of the laminate to the stress intensity
factors of the constituting layers. Taking into account the results presented above and
following the approach discussed in Reference [4] we can, finally, express the
equation (8) as follows

J/= K]2 {AIA 22 / A[(A,, / A12 )112 + A12 / A 22 + A / (2A 66 A 22 )]})12  (15)

The analogous equation may be obtained on the basis of similar approach in case of
bending loading.

EXPERIMENTAL CRACK RESISTANCE CHARACTERISTICS OF HYBRID
COMPOSITES

The central notched specimens of rectangular cross-section were subjected to a tensile
test. The directions of loading and reinforcement orientation did not coincide in some
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cases in order to facilitate the exposure of the nonlinear fracture behaviour. Besides,
some of the organic-based materials revealed the non-linearity due to the nature of
organic fibres themselves. The edge notched beams made of hybrid materials were
used as a specimens for bending tests. Fracture diagrams were registered by means of
the high speed shooting technique. Using these results the corresponding J - integrals
have been calculated. The following materials have been tested: glass satin
fabric/epoxy-phenol plastic EF32-301; unidirectional glass/epoxy composite EDT-10;
unidirectional glass/epoxy-phenol plastic VMS-6; hybrid glass-carbon/epoxy-phenol
composite reinforced with the glass fabric T-25 (VM) (4 outer layers) and carbon fibre
tape LU-3 (7 inner layers); hybrid carbon/epoxy (UKN-500) and organic/epoxy
(SVM) composite; unidirectional glass/epoxy plastic T-25(VM). The results of the
experiments and calculations are presented in Table 1 ( 5 is the angle of
reinforcement orientation).

DAMAGE TOLERANCE OF HELICOPTER ROTOR BLADE

On the basis of the theoretical approach discussed and experimental results obtained
for various types of composites the prediction of the tolerable defect sizes has been
produced for the composite helicopter blade. The blade was made of hybrid composite
material consisting of 16 layers (4= 00) and 4 layers (4= 45') of T-25 (VM) and 13

layers of LU-3 (4 = 00). The fibre angles of the layers were oriented symmetrically

Table 1. Crack resistance characteristics

Material K1c JIc

N/mm 3/2  N/mm

1. EF32-301 = 0° 808 42.6

2. T-25 (VM)

0= 0 1500 142

0450 910 87.4

3. EDT-10 = 5' 1770 375

4. VMS-6

0= 0. 2250 519

0=25' 1460 336
837 39.5

0=650

5. LU-3, 4 = 0' 873 63.3

6. T-25 (VM)+LU-3 1180 -
7. SVM + UKN - 87.8
8. T-25 (VM) (bending) - 212

with respect to the middle surface of the blade wall. The basic set of the mechanical
constants of the unidirectional materials involved has been obtained from the
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experiments and the corresponding values of Q, have been calculated. The cross-
section of the blade with the working stress of 110 MPa has been identified using the
results of the numerical stress analysis. The width of this cross-section of the blade
was equal to 220 mm. Using this information and equations (13), (14), and (15) the
calculations have been produced for various crack sizes. The results of the
computations showed that the maximum allowable crack size was 140 mm (64% of

the blade width) for the layer made of T-25 (VM) with (0 = 00). The critical crack
size was equal to 186 mm (85% of the blade width) for the layer made of the same
material and angle of reinforcement orientation (0= 450). The maximum allowable
crack size was found to be of 9.6 mm for the layer made of LU-3, and the critical
crack length for the through defect in the blade wall as a whole has been estimated as
73.6 mm.

CONCLUSIONS

The nonlinear fracture behaviour of composite materials should be taken into account
in the process of damage-tolerant design. The approach to the nonlinear fracture
analysis of hybrid composites discussed in this paper is based on the combination of J
-contour integral technique and methods of nonlinear fracture mechanics. The
theoretical and experimental results presented in this work demonstrate the possible
way of the damage tolerance estimation of composite structural components. The
method can be used for fracture analysis and prediction of the .tolerable defect size.
The designer may take an advantage of this to tailor the mechanical properties
distribution over the structure and material combinations in correspondence with the
obtained estimates.
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INTRODUCTION

Composite materials applied to transportation are usually subjected to cyclic loads that

extend for periods of time longer than the ones traditionally studied. Therefore, it seems

necessary to define a prediction model which would extend its range beyond the

traditional 106 cycles of the S-N curves. This paper develops a prediction model based

on the residual strength degradation of composites when subjected to cyclic loads.

FATIGUE THEORIES BASED ON RESIDUAL STRENGTH DEGRADATION

HYPOTHESIS

Composite fatigue theories based on residual strength degradation are based on three

assumptions:

1) The static strength follows a two-parameter Weibull distribution

where X and 1 are the shape and scale parameters of the Weibull distribution. A

maximum-likelihood estimation method is used in order to determine both

parameters from the static data.

2) Residual strength, O'r, after n cycles of constant amplitude alternating load is related

to the initial static strength, ae, through a deterministic equation.

da- _ 11A H-IA
-- = --A~aa a" (2)

dn

where a, ca, A and B are the instantaneous material strength, the maximum applied

load, and two dimensionless functions that do not depend on dr.

3) Fatigue failure takes place when the residual strength decreases to the maximum

cyclic applied load, i.e., ar = ra.
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FIRST APPROACH

Like A and B are independent from a, Equation (2) can be integrated to yield:

I/A I/A -B IA(n 1) (3)O~ 0 7e -B- ni 3

where integration limits are chosen to provide that, if failure takes place over the first

cycle, the residual strength, a, equals to the initial static strength, ae. Equation (3) may

be rewritten as:

oe~a~~A+ B(n_1) (4)

Assumption 3) stated that fatigue failure takes place when (7, = aa. Therefore:

ae = a1 + (N - 1)B]A (5)
-where N are the cycles to failure when the applied cyclic stress is a.. Equation (5)

describes the S-N curve of the material as a function of the two mentioned before

dimensionless functions, A and B. These two parameters adopt different forms which

may even include the dependence upon the stress ratio, R. However, test data for

different stress ratio was not available, so only two fatigue models were assumed

depending on the shape of A and B. The two models considered in this paper are:

Model A B
M1 A0  1
M2 A0  B0

Model 1 is the most commonly used power law, where B = 1, that results in a straight

line when plotting the S-N curve on a log-log plot. This model is the simplest one, being

broadly used by Ran Kim (Ref. [1, 4]). Model 2 is the wearout model, where A and B

are constants, and has been used by Sendeckyj and co-workers (Ref. [2, 5-9]). Fatigue

theory parameters may be obtained by different estimation procedures, as regression

analysis. If the possibility of failure during the first cycle is disregarded, then the life

distribution can be obtained by substituting Equation (5) into Equation (1), to get:

S/ -(1-B) B

where Oaf = Aa; flj = aII ; '=(-B

Finally, the residual strength distribution can be obtained by substituting Equation (3)

into Equation (1), to yield:

"P(C.,)=exp P fl+ A B(n - 1)11 (6)
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Equation (5) resembles a three-parameter Weibull distribution. Ran Kim (Ref. [1]) uses

this resemblance to formulate his residual strength degradation model. However, he

does not take into account the influence of more-than-one parameter S-N curves. It is

observed through experimental tests that the shape parameter, af = aA, does not depend

upon the applied stress level in fatigue tests. Therefore, it may be inferred that a

combined shape parameter exists for the whole fatigue distribution in the material. This

parameter is figured out by normalizing the cycles for each stress level over the

corresponding pooled Weibull scale parameter, Pi, for that stress level. Maximum-

likelihood method may be used again to calculate the combined shape parameter once

the data have been normalized.

On the other hand, Equation (5) defines 13f as (13 / ya)l/A/B. The Pf parameter is the scale

parameter of a Weibull distribution. Then, due to the own nature of the distribution, this

parameter means the value of the characteristic life of the distribution. In the case of

fatigue, the characteristic life is the fatigue life, N.

6ff=N (7)

The life N is found out from the S-N curve equation, Equation (5). Introducing these

changes onto Equations (5) and (6), the new residual strength distribution and fatigue

life distribution equations for each fatigue model are obtained:

af
aa+(n 1) af~ laf 1

P~c~) =exP1(~a/a + n -) F) = e - 'y/a + (n-i
C ( e / a a )11A(0 -e / a ,,)v'I - 1 -

B

Model M1, Equation (8) Model M2, Equation (9)

_(N )= e L {{ A a P(N) = exp (e / o-)/A 1 I1
B

Model Ml, Equation (10) Model M2, Equation (11)

Theoretical curves described by Equations (8) and (9) are presented together with the

experimental residual strength data for different fatigue lives and applied stresses, for

three different material systems: a glass fibre reinforced polyester, a glass fibre

reinforced epoxy, and a carbon fibre reinforced epoxy. Probabilities of survival for the

residual strength data are obtained through the median rank formula, f(x) = 1 - (i - 0.3) /

(n + 0.4), where i is the ith test specimen for a sample size of n specimens.
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It is noticed that, for glass fibre reinforced composites, experimental data appear

to be located to the left of the theoretical prediction. Therefore, Equations (8) and

(9) are not a good prediction method.

In the case of the carbon fibre reinforced composite, the model seems to fit more

satisfactorily to the experimental data. A possible explanation about this divergence

between glass and carbon fibre may be the worse glass composite fatigue behaviour

than carbon composites, which translates into a greater data dispersion. Thus, it was

necessary to revise the statistical parameter determination procedure by introducing

confidence bounds which may be able to issue a safe design value.

SECOND APPROACH (PROBABILISTIC)

The great existing divergence between the theoretical prediction and the experimental

data made necessary the revision of the probabilistic procedures for estimating the shape

and scale parameters, cc and 13, for both Weibull distributions, fatigue and static

distributions.

Fortunately, maximum likelihood method issues the advantage that confidence bounds

may be calculated for the a and 13 estimations.

If 3 means the Weibull scale parameter estimation issued from the static data through

the maximum likelihood method - Equation (10) -, the 95% confidence bound for the

scale parameter, 13, may be obtained from:
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P(a ln(fl/ /,) < 10,9 5) = 0,95 (12)

where a is the shape Weibull parameter estimation from the static strength distribution,

and 1*0,95 is the statistic critical value that verifies Equation (12).

If A names the lower limit of the 95% confidence bound, then:

0= f exp[-(l*0 ,95/ i)] (13)

Admissible value B, XB, is a fatigue design value for a material. It is defined by the

probabilistic assessment that is 95% reliable the statement that the probability of

survival of the admissible value B is 90%. Thus, admissible value B, XB, may be

obtained from:

P(XB) = exp[-(XB/3 )&] = 0,90 o Xa = D [-In(0,90)]1/& (14)

The admissible value XB is introduced in the formulation instead of P3 to get:

In fatigue, the lower limit for the confidence bound is obtained at 95% certainty for each

stress level; afterwards, the admissible value XBj is calculated for each stress level.

Fatigue data is then normalised by XBi to get the shape and scale parameter of the

fatigue life distribution.

The admissible value XB is introduced in the formulation instead of 13 to get:
~( 1 XJ (U/ca

PTfr)= +) ( -) P(°r)=exp [ +

Model M1, Equation (15) Model M2, Ecuaci6n (16)

Equations (15) and (16) are plotted with the residual strength experimental data, their

probabilities of survival obtained through the median rank formula. At last, fatigue life

distributions are plotted according to Equations (10) and (11).
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CONCLUSIONS

# It has been shown that the Weibull distribution also models the fatigue response of

polymeric matrix composites.

* The introduction of more complex fatigue models than the traditionally used linear

model to characterise the S-N curve does not yield a significant better fit of the

curves to the experimental data.

* The introduction of confidence bounds and admissible design values in the fatigue

parameters estimation procedures is necessary in glass fibre reinforced compcsites.

e The use of confidence bounds in carbon fibre reinforced composites does no: appear

to be needed, maybe due to the better fatigue response of this kind 3f compotites.
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IMPACT PERFORATION OF THIN STIFFENED CFRP PANELS

M. S. Found, I. C. Howard and A. P. Paran
SIRIUS, Department of Mechanical Engineering,

University of Sheffield, Sheffield, UK

INTRODUCTION

Due to the lack of adequate predictive methods for determining the damage tolerance of
composite structures many present design tend to be conservative such that the
potential weight-saving is not achieved. Improvements in resistance to impact damage
may be obtained with the use of a thin membrane to absorb the energy with structural
stiffness being proyided by other means. Previously this has often involved the use of a
honeycomb core with CFRP skins to provide a sandwich section. However in service
such structures, if; damaged, prove difficult to repair. Therefore the use of local
stiffeners has been recognised as an alternative means of providing structural stiffness
for thin membranes [1-5].

Whilst there are no known references on the impact perforation of stiffened panels
attempts to model perforation of CFRP plain panels have been undertaken by a number
of workers based on energy considerations. Cantwell and Morton [6] showed that
elastic deformations, delaminations and shear-out were the main mechanisms, whilst
Delfosse and Poursartip [7] identified the proportions of matrix damage and fibre
damage absorbed at perforation. This paper suggests a means of predicting the impact
perforation threshold energy based on the static perforation energy associated with a
static indentation test. CFRP T-stiffened panels are subjected to dropweight impact and
static indentation tests and comparisons made with plain panels of similar lay-up.

EXPERIMENTAL

CFRP panels nominally 300 x 300 mm, stiffened with three parallel T-blades of 100
mm pitch were supplied by Hurel-Dubois UK. The blades measured 25 mm wide x
12.5 mm deep and the webs were produced from two plies back-to-back with the ends
bent at 900 to form a single thickness for the flange. Plain panels of the same three-ply
lay-up were also supplied for comparison. The material was a five-harness satin weave
carbon fibre preimpregnated with an epoxy resin designated 914C-713-40 and supplied
by Hexcel Composites. The panels were laid up in three plies as (0/90, ±45, 0/90) and
0/90 stiffeners added, each panel being moulded in one shot by Hurel-Dubois at a
nominal 58% fibre volume fraction.

An instrumented dropweight impact rig, described in Refs. [8, 9], was used for both
static indentation tests and low velocity impact tests. The panels were clamped to the
same ring pressure using two annular rings ranging from 100 to 300 mm internal
diameter, the lower ring having slots to accept the webs of the stiffeners. Dropweight
impact tests were conducted from a height of 0.5 m to produce an impact velocity of the
impactor of about 3 m/s. The impact forces and displacements were obtained from data
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that was processed through a digital low-pass filter set at a cut-off frequency of 3.5 kHz
[9]. Static indentation and impact tests were performed on the stiffened panels at three
different locations namely; in the bay between the stiffeners, at the loe of stiffeners and
directly in-line with stiffeners. Damage was assessed using :.-radiography and
microscopy techniques in order to determine the principal failtue mechanisms of
backface cracking, delamination and permanent indentation of the frob.tface.

RESULTS AND DISCUSSION

Figure 1 shows typical force-displacement plots for plain and stiffened panels of 100
mm diameter obtained from static indentation tests. Note that for patels of this size,
indentation between the stiffeners is very similar to indentation on a plain panel since
only a small length of the toes of adjacent stiffeners are encompassed within the test
diameter. The sudden load reduction of the stiffened panel is associated with a vertical
crack in the web of the stiffener immediately below the point of contact 1f the indentor.
However, the load increases again as the rest of the panel responds at reluced stiffness,
but still greater than that of a plain panel, to produce a maximum forct of more than
twice that of a plain panel. The second damage load identifies onset of lamage in the
panel in the form of backface cracking and remains dominant up to aboit the average
peak force when delaminations become dominant. At the start of the dovnside of the
load-displacement plot fibre fracture is significant leading to perforation of the panel.
The fractured portion of the web appeared to obstruct the progress of theindentor and
impeded the perforation of the panel. Figure 2 shows the influence of hcreasing the
test panel size up to 300 mm such that testing at a position between the stifimers is now
different to the response of a plain panel. Whilst the peak force is similar .'or the plain
panel and for testing between the stiffeners of a stiffened panel a greamer indentor
displacement is required to perforate the plain panels. Hence the static perforation
energy is higher for the plain panels due to their ability to store note energy.
Comparing Figures 1 and 2 shows that increasing the panel diameter males the panels
more compliant reducing the peak force on the stiffener but increasing the displacement
and perforation energy.

Figure 3 shows a plot of normalised peak force for indentation on the stiffener for the
300 mm panel identified in Figure 2. Often the peak force is not clearly defined and
therefore an average peak force is determined. This is obtained from the axea under the
force-displacement curve from the second damage load to the correspondng position
on the downside of the plot. The second damage load is identified by the snall change
in the upside of the plot and is associated with damage in the panel whic,. occurs at
approximately 85% of the peak force. Note that the first damage load is asso,.iated with
cracking of the web of the stiffener. Also shown in Figure 3 is the normandsed work
done by the indentor during the test. The static perforation energy of the parel may be
estimated in terms of maximum work done by the indentor to produce upper)ound and
lowerbound values. The former is obtained from the crossover of the tW plots in
Figure 3 which occurs at approximately 82% of the maximum work dcae by the
indentor to give an estimated static perforation energy of 5.58 J when the parcel is tested
in-line with the stiffener. The lower value is determined from the work done by the
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indentor at the median displacement associated with the average peak force which
occurs at approximately 60% of the maximum work done to produce an estimated static
perforation energy of 4.12 J.
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Table 1. Comparison of lower and upperbound static perforation energies with
impact perforation energies for 300 mm panels

Panel type and Plain Stiffened panel
indentor location panel between stiffeners on stiffener
Static perforation 1.82 1.85 4.12
energy J 2.50 2.44 5.58

Impact perforation 2.75 2.73 5.62
energy J

The static perforation energy also appears to be related to the impact perforation
threshold as shown in Table 1. The upperbound values of the static perforation energy
appear to give a reasonable estimate of the impact perforation threshold energy. We
have previously presented [8] energy maps as a means of identifying the different
mechanisms that develop from initial damage to perforation for plain panels subjected
to impact. In this paper Figures 4 to 6 represent energy maps relating to the principal
failure mechanisms of stiffened panels compared with plain panels of 300 mm
diameter. Figure 4 shows that whilst the maximum backface crack length is not
significantly different for each of the test conditions, that when tested in-line with a
stiffener the largest damage occurs at a much higher energy and that the perforation
energy is also greater. The backface cracking presented in Figure 4 refers to damage in
the actual panel. For a stiffened panel subjected to impact on a stiffener, there is
additionally a vertical crack in the web of the stiffener which occurs prior to damage in
the panel as earlier identified for the static case. Figures 5 and 6 for delamination area
and permanent indentation of the frontface of the panels respectively, show similar
trends to those identified in Figure 4 for backface cracking. They confirm that stiffened
panels subjected to impact between the stiffeners behave in a similar manner to that of
plain panels.

CONCLUSIONS

Static indentation and dropweight impact tests have been conducted on thin CFRP
blade-stiffened panels and comparisons made with similar plain panels. The static
perforation energy may be estimated from the work done by the indentor and the values
used to estimate the impact perforation threshold energy. The response of stiffened
panels loaded between the stiffeners is similar to that of plain panels. As expected, the
perforation energy is significantly increased when tests are conducted in-line with the
stiffeners. The principal failure mechanisms of backface cracking, delamination and
permanent indentation of the frontface have been identified and represented in the form
of energy maps. For panels loaded in-line with a stiffener the maximum damage levels
occur at higher energies than for the other panel conditions, however, the damage is
preceded by vertical cracking of the web of the stiffener.
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INTRODUCTION

In most of failure criteria which are used to predict the strength of laminates under any
anticipated loading conditions the behavior of single lamina is not included. However it is
obvious that at the beginning failure processes start in single lamina as a part of laminate.
Therefore there is a strong need to improve the method of laminate strength prediction
on the basis of strength data determined on monolayer composite. For these purposes
more information about damage accumulation in laminate during loading is necessary. It
should be noticed that most of damage parameters for laminates (remaining strength,
changes in stiffness modules, dumping or any other ,,characteristic damage parameters")
do not indicate the ,,critical events" in fracture processes because these parameters
depend on loading modes as a rule. Therefore an approach where the damage
accumulation is analyzed ,,in situ" in reference to the strength of single lamina seems to
be useful. To follow the development of damage accumulation in composites, an acoustic
emission method was applied with success for both composites and laminates under
different loading modes [1,2,3,4,5,6]. However, to detect the critical events in failure of
laminates, a more comprehensive analysis of AE signals is necessary. In this paper the
results of AE signals analysis produced during failure of polyester glass fiber reinforced
laminates in reference to failure criterion is presented.

MATERIALS AND TREATMENT

The tested laminate was four layer cross ply one. This laminate makes up the wall of
filament pipes wound at 1 = ± 54044'. Fiberglass Ltd. Superwind 20/70 E glass fiber was
used. The resin was a terephtalic polyester resin Impol T400. The average volume
fraction of fibers was Vf - 0.5. The tubular specimens were subjected to seven different
loading modes. The pipes were loaded up to the loss of loading capacity. This loss of
loading capacity depends on loading modes and rather does not coincide with the sample
collapse. The strength data of tested laminate are given in papers [2,7].

On the basis of these results, an attempt was made to develop the failure envelope. For
this reason the Tsai - Wu [4] criterion was applied which is given by formula:

(- 1131y, + 971Y2 + 5.15 a2 + 11.7(y 2- 12.51kl,2) * 10-5 1 (1)

The failure envelope described by Eqn. 1, is shown in Fig. 1. The black spots concern the
experimental data.

To investigate the mechanisms which took place in laminate during loading it is important
to know the properties of single lamina. The single lamina reinforced with undirected

525



fibers may be considered as a transversely isotropic material. For such materials stress
components are defined with respect to the symmetry axis. They are: normal stress
parallel to fiber a// normal stress perpendicular to fiber crL and shear stress referred to the
fiber and perpendicular direction r#. To determine these stress components for single
lamina at fracture, hoop wound pipes were loaded in tension, compression, torsion and
internally pressurized. During tension and torsion of hoop wound pipes, acoustic
emission was recorded in order to estimate the beginning of failure. The AE activity was
evaluated as RMS voltage. The hoop wound pipe in tension exhibits linear stress - strain
character and no acoustic emission was observed up to failure at stress cr_=14 MPa.
Samples under torsion exhibit nonlinear shear stress - angular deformation plot and the
beginning of fracture indicated by AE took place at shear stress c# - 18 MPa. Significant

increasing in AE activity at shear stress r# -35 MPa suggests changes in failure
mechanism.

To estimate the beginning of fracture in single lamina, when it is a part of the laminate,
the stress components in lamina should be known for any anticipated loading modes.
These components were computed for biaxial loading applied in the symmetry axis of
laminate (axial and hoop direction in tubular specimens). Stress calculations were made
using Puck solution [8]. For considered laminate the stress components in lamina in
dependence on applied loading are as below [7]:

(cyI = 0. 9 7 2 cTH + 0.414aA + 1.54 9 TrA

a_1 = 0.027aH + 0.5 82 aA + 0.650tAH (2)

-# = 0.3 6 3 1H - 0. 5 0 0 aA + 0. 1 17 "AH
where: aN-stress in hoop direction of pipe, aA-stress in axial direction of pipe

TrAJ-stress referred to axial direction of pipe.

To estimate fracture in single lamina as a part of laminate, the maximum stress criterion
was applied. Thus, it was assumed that the failure takes place when one of stress
components in the lamina is equal to its critical value. When these critical stress
components are introduced into left hand side of equations (2), the failure criteria for the
beginning of failure processes in single lamina are obtained. These criteria are superposed
on Tsai - Wu criterion in Fig. 1. The dot lines represent the beginning of fracture while the
solid lines parallel to them - the final fracture under shear. The other two straight lines
represent fracture due to the normal stress perpendicular to the fiber - positive and
negative, respectively. It is expected that failure processes are started at stress levels
enough high to exceed any of the critical stress for single lamina.

In this analysis, to follow the failure processes of cross ply pipes, and to detect the
beginning of fracture an acoustic emission technique was applied. For AE events data
acquisition, the acoustic emission processor GACEK with broad band sensor was used.
The acoustic emission behavior of tested laminate was changed significantly in
accordance to the loading mode. As an example, the loading and acoustic emission
intensity plotted against time for specimen in tension is shown in Fig.2, while in Fig.3 the
intensity of acoustic emission for pipe in compression is given. As it can be seen in Fig. 2,

the beginning of AE starts at stress aA --26 MPa, which corresponds to a_ - 13 MPa and

",r# - 13 MPa. Because normal stress cY1 is close to its critical stress aTJJ it seems that

cracking due to this stress component took place. Intensive AE starts at aA-- 56 MPa
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when shear stress exceeds its critical value for the beginning of shear fracture. At the
same time whitening of pipe as a result of matrix fiber debonding is observed. This
damage results in decreasing of loading capacity of samples. Some fiber rotation towards
specimen axis was observed which indicates that delamination took place.

During axial compression, acoustic emission was observed when the shear stress -r was
of the range from 20 to 50 MPa. The compressive stress a_1 perpendicular to fibers was
well below its critical values, thus cracking due to shear could take place. This was
confirmed by single white lines parallel to fibers which appeared at the same time as AE.
Only limited number of events was detected. Intensive AE took place during final failure.
After sample collapse, damage of laminate by shear can be seen.

DISCUSSION

For all applied loading modes, the acoustic emission started when the normal stress
perpendicular to fibers or shear stress parallel to fibers were equal to their critical value
determined for single lamina. At the beginning the observed AE was a burst type and the
number of acoustic events was limited. Intensive AE activity was observed at higher
loading levels for selected loading modes. They are axial tension, biaxial tension and, in a
less degree, hoop tension. High acoustic emission was accompanied by whitening of pipe
walls. These phenomena occurred in samples in axial and biaxial tension when both
stress components in lamina normal to fibers and shear parallel to fibers exceeded their
critical values. The strong acoustic emission for these two loading modes resulted from
intensive cracking of laminae and fibers matrix decoupling. In addition, for samples under
axial and hoop tension some fibers rotation towards axis of sample was observed. This
suggests that delamination has some contribution to AE, too. Details concerning results
of acoustic emission analysis of failure processes in tested laminate is given elsewhere [6].

A coincidence of the beginning of acoustic emission activity with critical stress in single
lamina attained in tested laminate suggests that lamina properties and failure mechanisms
in lamina are particularly relevant to the prediction of laminate failure. The simple
analysis of AE signals provided data for damage development intensity and accumulation
analysis, however it is not possible to detect the critical events in failure process.
Therefore an attempt has been made to apply multiparameter recognition of AE signals
for more detailed analysis of failure process. For this purpose PAC MISTRAS AE
processor has been applied. Four broad band sensors were located near the pipe ends.
The pipes were smoothly pressurized at constant rate equal to 0.6 bar/s. The events
summation, events rate, energy summation, energy rate, events duration and RMS
voltage have been recorded vs. pressure. Selected results for pipe loaded in M II are
given in Fig.4. As it can be seen in Fig.4(a) scr. 1-4 events summation and events rate are
the same for both channels. However, when energy and energy rate vs. pressure is taken
it can be seen the diagrams for both channels are different (see Figs. 4(b) scr.28-3 1). The
differences result from different distances between each sensor and the point where
failure processes take place. Therefore to evaluate, with the help of acoustic emission, the
critical load corresponding to the most intensive failure processes, a number of AE
parameters should be taken into consideration. As an example, a three dimensional the
diagrams are shown for pipe loaded in Mode II and in Mode III where number of counts
vs. pressure and AE signals amplitude is given (see Figs. 4(c)).
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CONCLUSIONS

The tests of laminate after failure process examined with the help of acoustic emission
technique together with signs of damage observation show that failure processes involved
different mechanisms according to the loading modes and applied loading. It should be
noticed that the major axis of failure ellipse is nearly parallel to envelopes resulting from
critical shear stress condition. The observed discrepancies between lower branch of Tsai -
Wu criterion and shear stress criterion may be caused by friction between fibers during
their reorientation.

The acoustic emission activity indicated that failure mechanisms depends strongly on
loading mode.

Multiparameter analysis of AE signals can be useful to determine loading range where the
failure process is the most intensive.
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ABSTRACT.
This paper presents an experimental study on the energy absorption capability of two different composite

profiles; both are realised in glass-polyester pultrusion. One of the profiles is a unidirectional box section, whilst the
other, an I section, consists of alternating layers of mat and fabric. For each one of the two profiles, six different
trigger geometries are analysed. The results show that the I profile is a good candidate for being considered for
energy absorption applications. It is also concluded that when studying a trigger geometry, slight modifications of it
(as the bevel angle of a bevel trigger) can result on important variations of the results.

INTRODUCTION.
The specific energy absorption levels obtained during the progressive axial crushing of organic

matrix composite material profiles are comparable to, or higher than, those obtained during progressive
axial folding of steel or aluminium profilesE"2 •. This fact makes composite materials a good choice for
the design of crash energy absorption elements.

Most of the studies on the energy absorption of composite profiles under axial crushing have been
focused on closed section profiles, while there are much less data on open section profilestE,'47 . This
paper presents an experimental study on the progressive axial crushing of an open profile: a I section,
which is realised on glass/polyester pultrusion consisting of mat and fabric alternating layers. A box
section, made of unidirectional pultrusion, has also been tested in order to have reference values to
evaluate the I profile. The effects of different trigger geometries are analysed for both studied profiles.

AXIAL PROGRESSIVE CRUSHING.

The failure of a composite profile under axial compressive loading occurs usually in a catastrophic
manner unless a progressive failure triggering mechanism is provided. This triggering mechanism
consists most of the times of machining an special geometry in one of the edges of the profile. The
trigger geometry originates a localised failure area as result of stress concentration; afterwards, the local
failure area progressively extends. Figure 1 shows the typical load/displacement curves for catastrophic
and progressive axial compressive failure of a composite profile.

CATASTROPHIC FAILURE PROGRESSIVE FAILURE

Load

S~Displaement
Dfspraoment

Figure 1

The area under the load/displacement curve represents the absorbed energy during the failure
process. This area is far higher when progressive crushing due to the approximately constant load under
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which failure progresses; this is the reason why a trigger mechanism is required to get a high energy
absorption level.

The energy absorption capability of a profile is measured with the specific energy absorption (Es),
which is defined as: E,= Pj(p.A), where A is the area of the section of the profile, P, is the sustained
load, and p is the density of the material.

When using a profile to protect an structure by absorbing crash energy is important to limit the
loads that the profile transmits, to avoid damage of the rest of the structure. Therefore, when selecting
the trigger geometry for an energy absorption element is not only important to have into account the
sustained load during crushing, but also the maximum load level which is reached along it. It is also
important to pay attention in figure 1 to the last section (final ascending part) of the progressive crushing
curve, it corresponds to an uncontrolled load increase that may occur in closed profiles as result of failed
material blocked inside the profile.

DESCRIPTION OF PROFILES AND TRIGGER.
An sketching of each one of the two sections that have been analysed is shown in figure 2. The

material in both sections is E-glass/polyester. The nominal weight content of glass is 65% for the box
section and 50% for the I section. The box section is realised in unidirectional pultrusion with an outer
layer of mat, and also a mat layer at the interior of the flanges. The I section consists of mat and plain

fabric alternating layers, with an small amount of unidirectional
5 mm material which is the minimum required by the pultrusion process.

For each one of the two profiles, two different trigger
geometry types have been analysed. Figure 3 shows these trigger
geometries and the name that is used to reference each one of them.
For each type of trigger geometry it has been considered the

unidfr. roving modification of the angle that defines it with values of 300, 450 and
600. Hence, six different trigger geometries (two types of trigger
and three angles for each type) have been studied for each profile.

The type T trigger geometry represents a modification of the
S 40 mm "tulip type" trigger which is usually referred in literaturet71 . This

modification has been chosen to simplify the machining in order to
5 m-m assure reliable values of the angle that defines the geometry.

unidir. roving

mtTrigger B Trigger I

fabr-c i Trigger T Trigger H

40 mm

Figure 2 BOX section profile I section profile

Figure 3

TESTING AND RESULTS.
As result of the combination of trigger types and angles, six different trigger geometries are

defined for each profile; these will be referred by the combination of the names in figure 3 and the angle

532



value; so, as an example, B-30 makes reference to a bevel trigger geometry (see figure 3) with a bevel
angle of 300.

The crushing tests were carried out in an Instron installation with a loading capacity of 100 kN.
Two steel plates were adapted to the installation. The specimens, 15 cm long, were crushed between the
plates at a constant speed of 0.21 mnm/s up to a relative displacement of 9 cm. Figure 4 shows a picture
of the testing of one of the I section profiles.

Figure 4

The load/displacement curves have been saved in numerical files through a digital oscilloscope
Fluke 105. These numerical files have been used to calculate the maximum load peaks and sustained
loads, and from them the specific energy absorption. Figure 5 shows one of the three curves
corresponding to each one of the tested trigger geometries for each section profile. Figure 6 is
equivalent, but is this case it corresponds to the I section profile.

Lo Trigger type B Lo Trigger type TLoad Load

(kN) 70 (N y .N;

60

500

20 
30 B 3

300

. ..... B-45 ..... T-45
n0 - B-60 10 - T-60

0 15 30 45 60 75 90 0 1 30 45 60 75 90

Displacement (mm) Displacement (mm)

Figure 5

Loa 45Trigger type I L 5 Trigger type HLoad Load
(kN.4 (kN) •'..t , .

30

25
20 2O0

15 15
10 I ý30 • W • H3

... . .. 1-45 70 ••• .. . .. H-45

5 - k60 5 -- +60

0 -.. O -0

0 5 30 45 60 75 90 0 is 30 45 60 75 90

Displacement (mm) Displacement (mrm)

Figure 6
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The figure 7 is included as an example of the differences between the curves obtained from equal
samples, given that these differences are not substantial, the curves in figure 5 and figure 6 can be taken

as representative of each trigger geometry for comparison porpoises. Moreover, the low dispersion of
results in terms of load peaks and sustained loads, allows to obtain fr-om each series of equal samples
averaged values that can be considered as representative of a given profile and trigger geometry.

Load X) Trigger type B / angle 602

(kN) 70

40

30

20 - Sample 1

S- Sample 2
10 - Sample 3

0 15 N0 45 M 75 90

I)isplaccnwlnt (rmii)

Fi\gurc 7

After testing, the samples were longitudinally cut to carry out a visual inspection of the crushed
zone. In the case of the box section, the inspected sectioned samples showed no difference in the type of

failure and level of damage depending on trigger type or angle. Figure 8 corresponds to a box section
which has been tested with a B-60 trigger. It can be seen how the outer layers of mat have delaminated.

The delaminated mat has fractured while bending, so finishing in the roll shape that can be appreciated in

the figure. The presence of some unidirectional fibres in the delaminated mat layer prevents it from
separating from the rest of the specimen. Fragmentation of fibres and resin has also occurred, resulting
in a rest of material debris.

• !1

Fi•,Orc 8

The unidirectional fibres have split in multiple groups inwards and outwards the profile. In the
webs of the profile this splitting is associated to the progression of a main central crack; while, in the

flanges, the presence of the interior mat (not present in the webs) avoids the onset and growing of a main

central crack.

The curves for the type T trigger indicate that the variation of the angle does not affect to the

sustained load level, so indicating than after the formation of the crush front it progresses in a constant

manner, but in the case of the B trigger type, the load/displacement curves show big differences

depending on the trigger angle. Anyway after the crush process, the sectioned samples corresponding to

B type trigger show the same type of failure and level of damage, independently of the angle, and without
difference respect to the T type triggers.

The trigger geomletries B-30 and B-45 generate at the first stages of the crush process a higher

level of damage (longer length of main central cracks in webs) than the B-60 trigger and than the T
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triggers, but as the crush proceeds this level reach the same value than in the other cases. This fact is
related to the important load reduction which is observed in the B type triggers curves after the initial
load peak. This load reduction is associated to the tearing of the box comers, shown in figure 7 for one
of the B-60 samples. After the sudden onset of the comer cracks, the length of these cracks decreases as
crush progresses and so the load increases again. With the B-30 and B-45 triggers longer cracks are
formed during comers tearing, this results in longer inner cracks that afterwards reduce progressively
their length until the final stable value of load is reached.

Figure 7

Figure 8 corresponds to a section of the web of a I section sample tested with a H-60 trigger, there
are not differences respect to the other trigger types and angles used for the I section. The delamination
between the alternating layers of mat and fabric and the formation of
a main central crack in the centre of the section can be observed in the
picture. In the flanges of the profile the same type of failure than in
the webs has been observed. In the I section samples, and as a
difference respect to the box section, the transverse fracture lines
which appear during bending of the delaminated material extend
through the whole material thickness and the failed material separates
from the rest of the specimen. Figure 8

SPECIFIC ENERGY ABSORPTION LEVELS.

The average values of the sustained crushing loads and of the maximum loads reached during the
process are shown in table 1. The results in table 1 show that for the I section profile, with either trigger
types I and H, and independently of the trigger angle, the same level of energy absorption is obtained
(37-39 J/gr). There is not either
important modification of the Box section Max. load (kM) E.,r) Isectonn Max. load (kN) & ar)

maximum load of the crushing t m

process depending on the trigger B.30 61.4 35.8 1-30 43.1 0

type or angle. B -45 59.6 35.7 1-45 42.0 37.8

B- 60 74.7 44.8 1-60 44.0 37.0
In the box section, the

trigger type and the angle show a T-30 66.7 42.0 H-30 47.7 39.0

very important influence in the T-45 64.6 43.0 H-45 43.2 39.8

level of energy absorption. For T 60 69.6 43.5 H-60 44.2

the T trigger the specific energy Table
absorption is around 43 J/gr
independently of the angle; while on the other hand, with the B trigger a level close to 45 J/gr (higher
than with the T trigger) is obtained with an angle of 60', without getting more than 36 J/gr with angles of
30' and 45'. Moreover, in the B trigger the angle also affects notably the maximum load value which is
reached during crushing.
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In terms of specific energy absorption the best result from all the trigger geometries studied for
both profiles is that of the B-60; with this trigger the energy absorption of the box profile is over 15%
higher than that which is obtained with any of the trigger types used in the I section profile, but the
maximum loads are also a 60% higher. Also, and thinking of the possibilities of practical application to
an energy absorbing element, it has to be notice that with the I section profile the problem of
uncontrolled load increasing due to material blockage at the interior of the profile would never occur.

CONCLUSIONS

The I section mat/fabric pultrusion profile shows, independently of the trigger geometry, an energy
absorption level which results very interesting if compared with that of the box section unidirectional
pultrusion profile. The energy absorption capability of the I section profile is only 15% smaller than
with the best trigger configuration of the box section profile while limits the maximum loads during
crushing process to a value which is 60% smaller. Also the I section profile, as an open section profile,
do not present problems of uncontrolled load increase as result of failed material blocking the crush
process.

In the case of the box section unidirectional pultrusion profile the trigger geometry has a very
important influence in the results. When a bevel trigger is used, different bevel angles give place to a
difference of 25% in the specific energy absorption level. In literature, many of the analysis of trigger
geometries consider only different geometry types but without analysing variations of the angle for a give
geometry and, as it has been shown, this could result in misleading conclusions.
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INTRODUCTION

Using plate models proves to be a convenient method for the resolution of three
dimensional problems when two dimensions are higher than the third one. With this
method only a minimal number of elements are needed to represent the model and
determine how it behaves by recreating the displacement field in the third direction.
The ability of composite materials to allow important stresses along certain directions
avoids designing massive parts, which represents gains in weight, costs (material or
development), and performance. In this way, it becomes necessary to develop adapted
tools for the analysis of structures using this kind of material. In fact,- for advanced
composites, transverse shear plays an important role because the ratio of the elastic
modulus to the shear modulus is high. Then the mechanical behaviour of laminated
composite structures is directly modified.
The aim is to define adequate reliable models for simple and fast modelling of
composite structures like plates. Indeed, various plate models will be compared to
numerical simulation and to experimental results through displacement, strain and stress
fields. The experimental model is composed of a clamped rectangular laminate plate
under uniformly distributed pressure.

APPROXIMATION MODEL

The studied models will be defined from the following displacement field:
U. (XI, x2 ,x3 ;,t) = ua (x1,X2 ,t) - x 3wo (x1 , x2 ,t) + f(x 3 )yot (XI. x 2 , t)

U 3 (xl,x 2 ,t) = w(xl,x 2 ,t)
The fifth variational unknowns are the membrane displacement in the a direction ua,
the transverse displacement w, and the rotation y". The models differ from the
definition of the f(x3) function which represents the transverse shear. The f(x3) function
defines the relative displacement fields for the currently existing models:

- f(x 3 ) = 0, Kirchhoff-Love theory [1],

- f(x 3 ) = x3 , Reissner-Mindlin theory [2],

-f(x3) =x 3 1- ý j, Reddy-Liu model [3],
3h2 )

-f(x3 ) = hi. 3 Touratier model [4].
i53h

537



GOVERNING EQUATIONS

From the virtual power principle, the motion equations and the natural boundary
conditions can be obtained. The calculations are made in small perturbations. The
principle is

f PU*fo f * w FJpU~Od~2=-JD :a~+ fU fd U FdF

The governing equations are:
-D 1 lw, 1111 - 2(D 12 + 2D 66 )w, 1122 - D22w, 2222 + d4lyI,111

+ (d12 + 2d 66 )(Y1 ,122 + Y2,211) + d22Y2,222 + q = 0

- d 1w,1 11 - (d12 + 2d66)w, 122 +D1 1YI,11 + (E)12 + D 66 )Y,1 (.2

+ D6 6 Y1, 2 2 -A 5 5 Y1 = 0

-d 2 2w, 2 2 2 - (d 12 + 2d 6 6 )w, 2 1 1 + D 2 2 Y2 ,2 2 + (D 12 + D 6 6 )Y2 ,2 1

+D 6 6 Y2,1 1 - A 4 4 Y2 = 0

with,
h/2

Dp, dtvDýv= j CLv(2,x3f(x3) (x3))dx3,
-hi2

h/2

A= f CJvf 2(x 3 )dx 3 , !.v=11,22,12,66.
-h/2

BOUNDARY PROBLEM

The boundary problem determination as shown in Navier introduced Timoshenko [5] or
Srinivas and Rao [6], proposes solutions for a clamped plate under a constant pressure
which are established within the Kirchhof-Love theory and do not allow to take into
account the refined models. The solutions proposed by Levy and developed by IdIbi [71
can yield results from refined models but only in the case of a two-edge simply
supported plate under sinusoidal load.
To find an analytical solution for clamped plates one has to simplify the solutions. A
method for the minimization of errors such as Galerkine's can lead to a solution in that
particular case. To approach the solution of a field (p, which represents the unknowns w
or (y,, a sum of linearly independent functions verifying the boundary conditions can be
used such as:

9p = J-a~i.pi (3)

i
where the coefficients ai are linearly independent. The method for the minimization of
errors could be employed in the following way:

[A(ak.APk - q.idD =0 with i =1,...,N (4)

A(...) represents the differential operator, and 9i the weighting function.
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If the operator is linear, which is the case of the differential stability equation in the
studied plate, one obtains a linear system in which cak can be deduced. This model
presents the advantage of establishing only one stability equation in the studied area.
The p function is chosen so as to verify the boundary conditions (xl=0,a ; x2=0,b)•

N
(Xa, X2= ) cai(x1 - a)i.xl.(x 2 - b)i.xi (5)

i=2
The results for a clamped square steel plate (ab=0.5m, h=0.025m) shows a good
convergence of the solution (Table 1).

Models W error (%)
Exact solution 890.70 ref.
Navier 846.70 4.93
Galerkin (present) 852.48 4.29

Table 1. Transverse displacement in the middle of the plate for different models
G.w(xl,x 2 )w -

h.q

So as to have a reference numerical solution, a finite element analysis will be used. This
approach is realized on the Abaqus software with elements S8R (1024 el.). The
convergence of the results obtained by this model is verified for the values of transverse
displacement and stresses. The results are compared to the exact solution (Table 2).

h W (exact) W (Abaqus)
0.025 890.7 891.9
0.05 62.83 63.19
0.07 18.64 18.83
0.1 5.61 5.70

Table 2. Transverse displacement in the middle of the plate for different thickness

EXPERIMENTAL SET-UP

The mechanical properties of the material are issued from a ultrasound method. This
method is based on the propagation of longitudinal and transverse ultrasound waves in
different directions in order to evaluate their velocities. The studied plate is composed
of glass fiber associated with a polyester resin.
The mechanical properties are:

EI=16.798GPa, E,2=18.022GPa, E3=8876MPa,
G23=216OMPa, G12=3358MPa, G13=5203MPa,

V23=0.414, v320.202, V13=0.449, v31=0.237, V12=0.245, v21=0.262.

A bending test (Figure 1) allows the measurements of the behaviour of clamped plates
submitted to an uniformly distributed load (pressure).
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Figure 1. Test-bed for plates under pressure

DISPLACEMENT RESULTS

The first part of our experimental studies rests on the case of an isotropic plate
(a-b=0.4m, h=0.006m) submitted to a 2 bars pressure. The small perturbation
hypothesis is verified in our measurements.

0 0,05 o,1 0,15 0,2

10 0 0 61X2 [rn]

-0,00025 
&

-0,0005 K Tomtier

-0,00075 X

-0,001

-0,00125-

-0,0015 -
w [m]

-0,00175

Figure 2. Transverse displacement between an edge and the middle of the isotropic plate
for xi=a/2

This first comparison shows the homogeneity of the different models in determining the
deflection of the plate (Figure 2). The experimental values have been measured with the
help of a tridimensional measuring machine. The values are quite good, especially in the
middle of the plate.

Then the orthotropic material described above is tested. The dimension are: ab=0.4m,
h=0.013m. The small perturbation hypothesis is verified in our tests.
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Figure 3. Transverse displacement between an edge and the middle of the orthotropic
plate for x1=a/2

On this figure (Figure 3) one can note the coherence of the different models for the
transverse displacements especially in the middle of the plate. The difference between
experimental values and theoretical results can be explained by the heterogeneity of the
structure and by the effect of the deformations introduced on the clamping of the plate.

STRAIN RESULTS

The plates have been fitted out with strain gauges on the top surface. A small chain is
used in order to get information on the edge effects (Figure 4).

-A

Figure 4. Instrumentation for strain measurements

The figures 5-6 shows the coherence between experimental and numerical results in the
middle of the plate as well as the convergence of all models. The measurements taken
on the edge zone present good results for the isotropic plate, but a difference appears for
the orthotropic plate. This can be explained by the transverse sensitivity of the strain
gauges.
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Figure 5-6. Distribution of the deformation for an isotropic and an orthotropic plate

CONCLUSION

The experimental tests have been realized to validate the refined plate models. They
show the difficulty of obtaining accurate and reliable results. In fact, the experimental
parameters which have an effect on measurements are large and their influences are
identified with difficulty. In our case, the clamped boundary condition leads to
deformations which affect the behaviour of the plate on the edge zone. On the other
hand, the measuring system used involves an average effect on the values which reduce
the research phenomenon.
This work is focused on the research of boundary conditions and load types in order to
minimize the difference between experimental and theoretical results. Then free edge
boundary conditions could be considered.
Finally, the validation of differences noted down in the determination of the unknowns
by the considered models, requires developed techniques (ie. photoelasticimetry) in
order to highlight the distribution of stress and strain through the thickness of the
composite plate.
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INTRODUCTION

Nondestructive methods of materials evaluation are a reliable part of practical
testing of physical properties of composite materials. In a wide range of different methods
of nondestructive testing (NDT) ultrasonic methods occupies one of the leading places.
Ultrasonic methods were mostly developed for characterization of metals and alloys.
During the last several decades composites have begun to substitute such traditional
materials as metals, alloys, wood, and ceramics. And previously developed ultrasonic
methods and instrumentation have been applied for new materials. But such a direct
compilation has brought a number of discrepancies connected with estimation of the main
characteristics of composites, such as modules of elasticity, strength, and crack resistance.
An attempt to explain some problems of ultrasonic characterization of the materials is made
in this work.

ELASTIC MODULES OF COMPOSITES

Elastic modules are the most important characteristics of composites. They are
calculated parameters in analytical apparatus of physical theory of damage and fracture of
structural materials. Elastic modules are included into all formulae of solid mechanics and
serve for design calculations of structures, machines, and devices [1]. Unlike other
characteristics of solids, elastic modules are very sensitive to structural properties of
composites. For example, for polymer composites a slight change of composition of one of
the components can give a considerable change of elastic modules of the material- Existing
experimental methods for estimation of elastic modules of different structures of
composites obtained by destructive and nondestructive methods give a noticeable
dispersion of data. Majority of researchers and practicians try to explain that by imperfect
instrumentation or procedure of application. Therefore, a number of theories of solids, for
example for polycrystals, describe elastic characteristics as a range of modules [2].

M*:M0±M+ (1)
k

where Mk -modules, Ut -weight coefficients, and k 1,2,...,oo

Other sources give special significance to testing temperature, porosity of specimens
or anisotropy of materials [3, 4]. Stress is also considered as a reason of data dispersion

543



during tests. Modules of the third degree are often used for compensation of stress impact
[5]. Modules for multicomponent composite materials have complex character. They
depend on the modules of each of the components and their combination and volume
proportions of the elements. We can also take for consideration regular composites, where
components have a determined succession of' components, for example fiberglass and
composites with random combination of components for example concrete (Fig. 1).

a) b) M

MIMtM2

4 M3~ Mk

c) d)

Fig. 1. Multicomponent materials: a - multifaced; b - maltilayered; c - two-component with
regular filling; d - two component with irregular filling, where Mf,,,g - module of filling,

M,.ft,• - module of matrix, M* - effective modules and k = 1,2,...,oo - number of
components of composite material

There are several theoretical analytical approaches for estimation of an average
module for such materials [6]. But it is more important for calculation of safety and
reliability of structures to estimate value limits of modules for these composites. For
example it is possible to take a two-component material for demonstration of relationship
of modules of each of the components with their resulting value of modules for the
material. Composite matrix-filling material may serve for this purpose. In this case
homogeneous matrix with module M1 and a random filling with module M2 are
investigated. An approach based on "Hill's fork" may be used for analysis of such a
material. This approach describes composite material as a stochastic elastic model and
gives solution only for top MtoP and bottom Mbot limits depending on volume proportions

of matrix Vmt,• and filling Vfig Distribution of filling in matrix may be considered as

uniformed random distribution [7] (Fig. lc).
Hashin and Shtrikman investigate a mathematical model of composite with

stochastic distribution of filling in matrix [8] (Fig. ld). Effective modules M* are
considered for two-component material with random distribution of filling in matrix.
Filling may be of any shape and its volume in the matrix may be very large. As a result this
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approach, comparing with the previously mentioned one, gives more precise value limits
for elastic modules of composite material with a good practical correlation.

The following formulae may be applied for calculation of the top limit of the

resulting effective volume module K top

Ko* = K + (K 2 -K)(2)
T +lVa.(K 2 -K 1)(

and for the bottom limit of the module Kbo,*

Kbo,* = K2 + V1(K-K 2) (3)
I + V2a 2(K, -K 2)

To calculate the top and bottom limits of effective shear module G* the following formulae

may be applied, for GOP*

, V2(G2 -G,)
G t G+ IV8l(G2 -GI)

and Gbo,*

SV, (GI -GG2 )
1 + V2f62 (GI - G2)

Where coefficients am, a2 ,/18,andfi2 are

3 3 6(K, - 2G) 6(K 2-2G 2)a, =-;a2 ;l = ;"81 ==8 (6)
3K1 + 4G 3K2 +4G 2  5G1 (3K1 + 4G2 )' 5G2(3K2 -4G 2 )

and Vj,V2 - volumes of matrix and filling.

It should be noticed that average values of modules were not found. So, it may be
assumed that they do not exist as a clear defined statistical characteristics such as mode,
median, and average value for elastic modules of composites. There is a schematic
representation of effective module limits in the Fig. 2. Combination of volume modules K*
and Young modules E* give value of all other linear modules. For modules of higher
degree (for example, Murnaghan module) other approaches may be applied.

Taking formulae (2) - (6) it is possible to conclude that for two-component material
with hard matrix and soft filling (light filling concrete) elastic modules shift to the bottom
limits, and for material with soft matrix and hard filling (heavy filling concrete) elastic
modules shift to the top limits of their values.
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S/top

o 0ov. •,, o v. •,o~ Kbot

0 50 VM f', 0 50 n 'y

VOLUME PROPORTION OF VOLUME PROPORTION OF
FILLING IN MATXlC FLLING IN MAT=II

Fig. 2. Computer simulation of limits of effective elastic modules: K* - volume module,
E* - Young modules, Vm / V1 - volume proportion of filling in matrix for two-component

composite material, where K1 = 60MPa, K2 = 20MPa,l* = 0.25

Hashin-Shtrikman model is developed to describe materials with porous matrix. The
following relations for effective modules taking into account porosity parameter Por may
be applied for characterization of ceramics, concrete and some other composites: for
volume module Kwr* [4]

Kpo* = K *[1-- (1-2u*).Pr (7)

for shear module Gpor

Gpor* = I - 15(1-,a*)-Por 1  (8)

for Young module Epor

Epor* E*[ (1-*)-(27+151*)'Por (9)
42( -- 6 -9
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for pores of ellipse shapes. For pores of a circular shape it is possible to use a more simple
formula:

E r E*[I- 15(1-))Por ] (10)1(7 - 5,11) + 2(4 - 5pt*)

where u* - effective Poisson ratio.

It is possible to conclude that reduction of the matrix elastic properties M connected
with increase of porosity Po that affects effective modules of the whole composite material
with random structure widening their bottom limits.

ULTRASONIC CHARACTERIZATION OF COMPOSITES

Special properties of composites that can be determined by their elastic modules are
described above. If we accept ultrasonic wave velocity as a main parameter for
characterization of materials, then we may expect that these properties be displayed in
ultrasonic testing data. Velocity data dispersion characterizes top and bottom limits of
elastic modules values and at the same time includes errors connected with measuring
procedures. These errors give additional extension of module "fork" and hinder
classification of materials with similar properties.

Usage of ultrasonic testing for estimation of strength of composites is connected
with additional problems basing on absence of analytical relation between strength and
elastic modules for all known materials. Several attempts were made to build a regression
relation between strength and elastic modules, and some positive results were obtained. In
these cases "fork" of top and bottom strength limits widen due to statistical correlation
between the investigating parameters and depends on closeness between elastic modules of
the material and its strength.

Ultrasonic estimation of cracking under loads connected with change of elastic
modules of material due to development of macro and micro cracks and pores, from one
side, and, from the other side, with special effects of diffraction and refraction of acoustic
waves on inhomogeneities of composites. Sometimes these effects unite and considerably
change wave velocity e.g. modules estimation, sometimes they conflict with one another
and do not give a possibility to estimate stress for characterization of composites.

CONCLUSION

Special insight into the problems of ultrasonic characterization of composite
material properties, such as modules of elasticity, strength, and cracking is presented in this
paper. Some difficulties and dead end problems based in the notion of effective elastic
modules that should be taken into account during analysis of data received by ultrasonic
testing of composites are shown. But these disadvantages are connected with traditional
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analysis of ultrasonic velocity and amplitude for materials evaluation. Right now new

approaches to data analysis basing on signal processing, pattern recognition, fuzzy logic,

and neural network tools give an opportunity to develop ultrasonic testing methods and

overcome their disadvantages. That is why we can expect positive results of future

development and application of ultrasonic methods for NDT of composites.
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ON THE APPLICATION OF THE ACOUSTIC EMISSION AND
INFRARED THERMOGRAPHY TO FRACTURE PROCESS

EVALUATION IN SHORT FIBRE REINFORCED PLASTICS

J.Schmidt, I.Baran.

Foundry Research Institute, Zakopiafiska 73 str., Krakow, Poland

INTRODUCTION

The composite materials comprising a brittle matrix made of plastic reinforced with
short fibres, manufactured in the process of injection are characterised by structural
anisotropy, due to the distribution of fibres obtained in the course of the technological
process. Consequently, what we obtain is a material or an element whose resistance
and toughness are the result of an interaction of the regions characterised by different
orientation of the reinforcing phase. The formation of fractures in material of this type
is a very complex process. Considering to material anisotropy settlement of the
initiation processes and joining of creating processing has particular sense both on
diagnostic of made from this material object as well for fracture toughness allocation.
It has been assumed that different crack events shell produce different acoustic signals
of which analysis allows to identificate of essential cracking steps. Acoustic emission
method is not able to present of the region in which the crack occurs therefore
simultaneously the thermal picture of the crack tip area was recorded as a function of
loading.

The aim of our investigation was to describe the effect of microstructure on fracture
mechanism in phenolic short glass fibre reinforced composites. The samples CT were
machined from 5 mm thick sheets, in L-T and T-L crack orientation in respect to the
mould filling direction.

The compact samples configurations are : W/A = 48/24, W/B = 48/5.

The samples were tension loaded using computer controlled Schenck systems, and the
crack opening was measured by 10 mm clip gauge. In the loading system an
additional protection was provided to eliminate the possible loss of specimen stability.
The variations in temperature field within the area of crack development were
recorded by an AGA 680 camera equipped with a numerical system of image
recording.

The AE signals produced during loading were together with load and displacement
recorded by PAC Mistras 2001 system.

RESULTS

The multi-ply structure of the examined material is well visible on a geometrical
model of the orientation of a structure-reinforcing phase, revealed by microscopic
examinations (Fig. 1).
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For this type of structure the measurement of fracture toughness KQ basing on the
values of the crack- initiating load, determined according to the laws of the linear
fracture mechanics, has no physical justification since the process of fracture is not
occurring simultaneously in each layer.

Fig. 1. Model of structural geometry

Figures 2 show the curves of the loading versus crack opening for both structure
orientations; they also serve for computation of the fracture toughness KQ (in
accordance the approach of linear fracture mechanics [1]). Diagram is completed by
differential parameter duration to load. The tests performed for both structure
orientations, i.e. L-T and T-L, enable the determination of an effective critical load
corresponding to the initiation of fracture process, combining the observed effect of
thermomechanical coupling and variations in acoustic emission. The image of the
thermal effect on the loading process are presented for examples in figure 3. Basing
on realise experiments, as the parameters best describing the fracture process the
following ones were selected: the duration of emission signals, the rise time
describing an increment in the signal value up to its a maximum level, and the number
of events. For structure orientation L-T the recorded changes in acoustic emission are
presented in Figures 4. For structure orientation T-L the AE parameters are shown in
Figures 5.

ANALYSIS

The main aim of the application in loading tests of various measuring methods is to
determine the value of the effective load at which the fracture process is initiated. The
observations of the temperature field enable an evaluation of the increase in plastic
strain near the crack tip, revealed by temperature increase up to achievement of the
state of maximum temperature increment to cause crack development. In view of the
structural constitution of both the L-T and T-L specimens orientations, and especially
the fibre orientation in external layers, the processes of crack development are
different. In the case of L-T orientation the increase of strain is caused the initially
effect of heat dissipation (the change of temperature near the crack tip At=0,4 K) and
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cause the rapid formation of a long crack. In the case of T-L orientation a short crack
appears in the external layer at the crack tip with unfavourable orientation to the
normal load (the maximum change in temperature At=0,9 K) and as soon as its
development has been arrested, the second full structure crack branching caused by
loading in the central zone of structure is formed.
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Fig.4. L-T orientation: History of acoustic emission events and rise time versus load
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Fig.5. T-L orientation: History of acoustic emission events and rise time versus load
[kN]

When the crack development is caused the loss of structural stability, the dissipation
process is expressed by an increase of the zone temperature by 2,4 K. Since outside
the zone of an increase in plastic strain, along the plane of fracture, the volume of
structure changes due to an elastic deformation of the matrix, the superficially
changing zone of reduced temperature is visible for both structures (-0,2 K). To make
the recorded changes in the signals of acoustic emission, the parameters corresponding
to the fracture mechanisms which occur during loading were analysed. For the'
examined structure the critical parameter has proved to be the process of the
coalescence of microdeformations to form linear cracks and the process of pulling out
of fibres [2]. The fracture process is initiated separately in individual layers of the
specimen with different fibre orientation at various levels of loading, while the
strength of structure is due to a combined effect of the operating mechanisms. In the
process of loading, the change duration parameter within a broad band of amplitude
and the time of the signal amplitude increase satisfactorily represent the load level rise
or the crack tip opening critical for a stability of this process. From the point of view
of an effective evaluation of the failure process, this period should be regarded as a
critical one for the crack growth. In the case of structure with L-T orientation this
state corresponds to a load of 880 N. The process of failure starts in the internal layer
of the structure characterised by an orientation unfavourable in relation to the normal
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load. In the case of structure with T-L orientation, the critical level corresponds to a
load of 970 N. The process of heat dissipation corresponding to increase in strain near
the crack tip is also corresponding to the deformation of a superficial layer.

In the structure of orientation L-T the process of failure in the external layer
characterised by a high strength relative to the applied load occurs not earlier but only
after a failure in the central zone has taken place, thus increasing the effect of
dissipation at a level of 920 N. In the structure of orientation T-L the beginning of
failure reduces the strength of the external layer and the process of dissipation in the
crack tip is noted to occur very distinctly at the load level of 980 N, according to the
critical level determined by acoustic emission. In this crack tip two cracks are
initiated. The first crack is in the external layer is arrested; the second crack is critical
for the stability of the specimen.

CONCLUSIONS

The analysis of the failure process in the structure described here has revealed some
serious obstacles in proper assessment of the critical state of loading during fracture
toughness KQ test. The multi-ply structure, in which during deformation various
mechanisms of fracture are acting, requires for a correct choice of the crack initiating
load, apart from the rules of linear mechanics, also the rules of the experimental
mechanics.

It seems that the proposed here, complementary to each other, methods of acoustic
emission and thermomechanical coupling give real chances for an effective evaluation
and proper choice of the critical load value under the conditions of the crack
formation and growth. The small differences in the critical load value determined by
the methods of the linear fracture mechanics and by the experiments are a
consequence of the effect of strain and of an additional effect of the phase
constituents. The application of the effect of thermomechanical coupling in testing of
the strain state in sub-surface zones enables an evaluation of the elastic strain state of
the composite matrix and of the plastic strain state which is responsible for the heat
dissipation effect. The application in the studies of the degree of structure damage of
the systems of acoustic emission gives the possibility of a multi-parameter assessment
of the state of composite structure, but the condition indispensable here is an exact
knowledge of this structure construction [3].

REFERENCIS
1.Williams J.G.: A linear elastic fracture mechanics (LEFM) standard for
determination Kc and Gcfor plastics, ESIS Polymers and Composites Task Group,
London, 1991;

2.Go3aski L., Schmidt J., Kujawinska M., Salbut L. "Fracture phenomena and
strain distribution at the vicinity of crack tip in short fibre composites", Proc. loth
Int. Conference on Experimental Mechanics", Lisbon 1994, Ed: J.F. Silva, A.A.
Balkema, Rotterdam, 1994;

3.Schmidt J.: Acoustic emission failure testing of short fibre composites with fibre-ply
distribution, Joint Polish-French Symposium on Advanced Materials, Paris, 1994.

554



555



556



AUTHOR INDEX

Adali, S .... 227, 265, 383,389, 463,489 Galileev, S M ................................... 345
Adanur,S .......................................... 101 Gaofeng, Q ....................................... 175
Ahm ad Fuad,M Y .............................. 51 Golaski, L ......................................... 525
Ait-Kadi, ........................................... 57 Gonzales, J ....................................... 107
A lbano, C ................................... 63, 107 Gopal, A K ....................................... 463
A 1-Qureshi, H A ................................. 69 Goryk, A V ...................................... 333
A1-Zadjali, S ................ 477 Gubin, N N ................. 345
Am ateau , M F ............................... 157 Gurtovy, O G ................................... 207
Araujo Santos, J V ........................... 417 Guz, I A ............................................ 501
A shida, F ............................................ 17 Haberko, K ....................................... 169
Atangana, A J ........................... 447, 453 How ard, L C .................................... 519
Avva, V S ........................................ 457 Huang, D ........................................ 395
A zarova, T .......................................... 89 Ichazo, M ......................................... 107
Banks, W M ..................................... 295 Ilyuschenko, A .............................. 89
Baran, I ..................................... 525, 549 Jeelani, S .......................................... 325
Basson, A H ..................................... 483 Jim enez, M A ........................... 253, 531
Becker, W ....................................... 201 Jonson, D ......................................... 287
Belinga, E P ..................................... 453 Ju, D Y ............................................ 181
Belostotsky, I ............... 307 Kalamkarov, A L ............. 239
Birm an, V ......................................... 495 Kandeil, A Y .................................... 119
Blom ert, D ......................................... 75 Karam a, M .................................... 537
Bodger, R ........................................ 271 Kashtalian, M ................................... 353
Brieu, M ......................................... 139 Kayupov, M A ................................ 435
Brito, Z ........................................... 113 Kingue, S J ..................................... 447
Bruch Jr, J C ..................................... 227 Kozak, W S ................................... 469
Burihyn, S G .................................... 365 Kravchuk, A S .................................. 301
Byrd, L B ........................................ 495 Krawczuk, M .................................. 403
Caperaa, S ........................................ 537 Krawiec, Z ..................................... 259
Castejon, L ............................... 253,423 Krikanov, A A .................................. 245
Chen, M ........................................... 319 Kuhn, G ...................................... 435
Chigarev, A V ............... 301 Lacassagne, J L .............. 537
Clem ente, R ............................. 253, 513 Lapusta, Yu N .................................. 145
Cuartero, J ................................ 423, 513 Larrode, E ................................ 253,531
Das, P S ......................................... 325 Le Bris, N ........................................ 313
Devries, F ........................................ 139 Lee, R .............................................. 319
Dum ontet, H ..................................... 313 LeneF ..................................... 139,313
Duvaut, G .................. 233 Lessmann, H G .............. 507
Dzonang, A D .................................. 447 Levin, V M ....................................... 151
Essoh, N H ...................................... 447 Li, Z ................................................. 319
Evseev, E G .............................. 429, 507 Librescu, L ........................................... 1
Faryna, M ....................................... 169 Lopez Rodriguez, M ....................... 423
Faye, J P ......................................... 537 Lyakhov, A L ................................... 333
Feldm an, E ...................................... 307 M ahfuz, H ........................................ 325
Foster, E ......................................... 325 M archuk, A V .................................. 441
Fouda, J B ....................................... 453 M arquez, L ................................. 63
Found, M S ..................................... 519 M atrosov, A V ................................. 345

557



AUTHOR INDEX

McCullough, R L ............................. 133 Russell, J A ...................................... 295
Mingjing, T ...................................... 175 Sadek, I S ......................................... 227
Miravete, A ............................. 513, 531 Sadler, R L ....................................... 457
Miroshnichenko, I N ........................ 345 Samba, N P ...................................... 453
Mistou, S .......................................... 537 Sanchez, G ....................................... 113
Morozov, E V .................. 359,429,507 Sato, Y .......................................... 83
Mota Soares, C A ............. 417 Schmidt, J ............... 525, 549
Mota Soares, C M ............................ 417 Schnick, T ..................................... 89
Muc, A .................................... 213,259 Seibi, A C ................................. 157,477
Navas, R ........................................... 107 Sevostianov, I B ............... 151,265,489
Nesvij ski, E G .................................. 543 Shenouda, S S .............................. 95
Noda, N .............................................. 17 Shitikova, M V ................................. 339
Nor Azlan, M R ................................. 51 Shivakumar, K N ............................. 457
Okoli, O I .................. 125 Silva, J L G .................. 69
Ostachowicz, W .............................. 403 Simelane, P S ................................... 371
Owono, A P ...................................... 453 Slinchenko, D ................................... 265
Papaspyrides, C D ............................ 133 Sloss, J M ......................................... 227
Paran, A P ........................................ 519 Smith, G F ........................................ 125
Parra, C ............................................ 107 Steinhauser, S ................................ 89
Paskaramoorthy, R ............ 187 Sun, B .............. 371,395,409
Pedzich, Z ....................................... 169 Swanson, S R ................................... 163
Pekego, P G ...................................... 453 Sylantiev, S A .................................. 507
Perera, R ................... 107 Tauchert, T R ......... 17, 383,389
Perez de Lucas, A ............................ 423 Terrel, G ........................................... 233
Phoenix, S L ......................................... 3 Tong, P ............................................. 319
Pina, H L G ...................................... 417 Urbina, C .......................................... 107
Pinzelli, R ........................................... 75 Varelidis, P C ................................... 133
Piskunov, V G .......................... 333,365 Vasiliev, V V ................................ 31
Polyakov, V A ............... 219 Veldsman, G .......... ...... 483
Pompe, W ......................................... 151 Verijenko,V 17, 265, 383, 389, 463, 489
Prisjaznuk, V K ............................... 441 von Klemperer, C J .......................... 271
Pyda, W .................................... 169, 195 Vuksanovic, D ................................. 377
Rahmad, S .......................................... 51 Walker, M ............................... 277, 287
Rahman, M ...................................... 325 Wielage, B ..................................... 89
Rasskazov, A A ................................ 365 Xu, B ................................................ 101
Revuelta, D ............................. 513, 531 Yousefi, A ..................................... 57
Richter, A ........................................ 389 Yujiu, S ............................................ 175
Ronca, G ............................................ 63 Zahran, R R ................................ 95,119
Rosales, C ........................................ 107 Zak, A ............................................. 403
Rossikhin, Y A ................................. 339 Zuchara, P ........................................ 213

558


